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A B S T R A C T

Pedestrian trajectory prediction from the first-person view has still been considered one of the challenging
problems in automatic driving due to the difficulty of understanding and predicting pedestrian actions.
Observing that pedestrian motion naturally contains the repetitive pattern of the gait cycle and global intention
information, we design a Multimodal Stepwise-Coordinating Network, namely MSCN, to sufficiently leverage
the underlying human motion properties. Specifically, we first design a multimodal spatial-frequency encoder,
which encodes the periodicity of pedestrian motion with a frequency-domain enhanced Transformer and other
visual information with a spatial-domain Transformer. Then, we propose a stepwise-coordinating decoder
structure, which leverages both local and global information in sequence decoding through a two-stage
decoding process. After generating a coarse sequence from the stepwise trajectory predictor, we design a
coordinator to aggregate the corresponding representations used to generate the coarse sequence. Subsequently,
the coordinator learns to output a refined sequence through a knowledge distillation process based on the
aggregated representations. In this way, MSCN can adequately capture the representations of short-term motion
behaviors, thus modeling better long-term sequence prediction. Extensive experiments show that the proposed
model can achieve significant improvements over state-of-the-art approaches on the PIE and JAAD datasets by
16.1% and 16.4% respectively.
1. Introduction

First-person view pedestrian trajectory prediction [1–5], which fore-
casts the future locations of pedestrians in an ego-centric view of a
moving vehicle, is crucial for automatic driving systems since it helps
to avoid collisions with pedestrians. Such a task requires not only a
high-level understanding of pedestrian historical behaviors but also a
clear perception of environments to accurately predict the future tra-
jectory of pedestrians. Therefore, existing works [2,4–10] have widely
explored leveraging additional modalities, such as ego-vehicle motion
data, optical flow data, etc., to improve the performance on first-person
view pedestrian trajectory prediction tasks compared to traditional
trajectory-based methods [4,11]. However, there are few analyses on
the fundamental and core point of view of pedestrian motion in existing
works.

In fact, pedestrian motion is a process containing both fine-grained
periodicity and global intention information. Specifically, pedestrian
motion naturally forms a series of gait cycles. For example, when a
pedestrian is walking, we can take the right foot of the pedestrian as
a reference. The right foot first touches the ground, then the left foot
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touches the ground, and finally, the right foot touches the ground again.
Therefore, we can find that the entire pedestrian walking process is
composed of a repetitive pattern of several gait cycles step by step,
indicating a periodicity [12–14]. Moreover, existing works [14–16]
have shown that human walking trajectory can be well modeled and
simulated based on human gait motion properties. All of the studies
indicate that the inherent property of short-term periodic gait cycle
should be taken into consideration for better pedestrian trajectory
prediction.

On the other hand, it is worth noting that pedestrian motion is
mostly driven by some intention or goal as global information along
with the fine-grained step-by-step process. For example, in the context
of traffic, pedestrians usually reach a certain destination within a given
time frame [17]. In existing works, incorporating goal estimation as an
auxiliary optimization objective has been shown to improve trajectory
prediction [3,17,18]. However, not much attention has been paid to
reviewing trajectory prediction results and refining the results based
on the global context understanding.
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Fig. 1. Illustration of pedestrian motion from the first-person view. It involves multiple modalities, including the ego-motion, the observed pedestrian trajectory, and the optical
flow information. The pedestrian motion inherently takes on the property of motion periodicity and global intention information.
Inspired by these observations in pedestrian motion, in this paper,
we propose a Multimodal Stepwise-Coordinating Network (MSCN),
leveraging the implicit property of periodic gait cycles and the global
information of pedestrians’ intention for better trajectory prediction
(the design tenet is depicted in Fig. 1). To be specific, we first design
a multimodal spatial-frequency encoder in which frequency-domain
enhanced Transformer and spatial Transformer are utilized to model
the periodicity of pedestrian motion and other visual information re-
spectively. Then, using a two-stage decoding process, we present a
stepwise-coordinating decoder that makes use of the global informa-
tion in sequence decoding. We create a coordinator to aggregate the
corresponding representations from the stepwise trajectory predictor
which generates the coarse sequence result. Afterward, we propose to
make the coordinator output a refined sequence through a knowledge
distillation process based on the aggregated representations. In this
way, the global information of the target sequence can be utilized to
refine the generation process. Extensive evaluations on two pedestrian
trajectory prediction datasets PIE [1] and JAAD [19] demonstrate
the effectiveness of MSCN and its advantages over state-of-the-art
baselines.

The main contributions of this paper can be summarized as:

1. We highlight a new direction for pedestrian trajectory predic-
tion by modeling local periodic gait cycle and global context
information during decoding.

2. We design a multimodal spatial-frequency encoder to effectively
model the periodicity of pedestrian motion with frequency-
domain enhanced Transformer fused with other spatial informa-
tion.

3. We propose a stepwise-coordinating decoder, which adopts a
two-stage decoding process, i.e., the stepwise trajectory pre-
dictor and the coordinator, to more effectively capture both
short-term and long-term motion interaction.

2. Related works

Trajectory prediction in first-person view circumstance. For
modeling first-person view trajectory prediction tasks, three modal-
ities are usually considered, i.e., pedestrian trajectory, ego-motion,
and image. For image modality, Rasouli et al. [1] proposed to incor-
porate pedestrian intention estimation and vehicle speed prediction
for future Trajectory Prediction by combining multiple LSTMs (Long
Short-Term Memory). Quan et al. [20] proposed a holistic LSTM to
2

incorporate multiple sources of information from pedestrians and ve-
hicles adaptively. Yang et al. [21] further proposed to fuse local patch
features with global semantic segmentation information for better scene
understanding. Rasouli et al. [7] designed a categorical interaction
module to generate interaction latent representation, thus capturing the
relationship between target pedestrians and surroundings. Yin et al. [6]
used the historical video to obtain optical flow information and uti-
lized Transformer architecture [22] to realize the coarse-grained fu-
sion and the fine-grained fusion for multimodal data. For pedestrian
trajectory and ego-motion modalities, Rasouli et al. [7] and Yang
et al. [21] proposed to model the trajectory and ego-motion through
LSTM [23] and multi-level GRU (Gate Recurrent Unit) [24] respec-
tively. Other works [5,6] applied the cross Transformer to model
trajectories and ego-motions to extract their potential relationships.
In this paper, to model various modality information in trajectory
prediction, we propose a multimodal spatial-frequency encoder, in
which frequency-domain enhanced Transformer is used to encode the
periodicity of pedestrian motion and spatial-domain Transformer is
used to extract other spatial information.

Decoders in trajectory prediction. In trajectory prediction, it
is simple and efficient to apply MLP (Multilayer Perceptron) as a
decoder [18,25]. However, this kind of decoder cannot guarantee
the smoothness of the prediction trajectory. The problem of trajec-
tory smoothness can be solved by fitting the trajectory with a fixed
mathematical function, such as cubic polynomial curve [26] or Bézier
curve [5], which is called curve-based decoder, while prediction flexi-
bility is still limited due to the pre-set fitting function. Pang et al. [27]
introduced Bayesian fully connected layers to handle uncertainty in tra-
jectory data, while others [17,28–30] have adopted GRU/LSTM as de-
coders to better capture temporal dependencies. Wu et al. [29] utilized
a stacked RNN that maps motion vectors from source views to target
views in multiview trajectory prediction. Additionally, Li et al. [31]
proposed a diffusion model-based decoder to capture overall trajectory
characteristics. Other works [32,33] employed decoders for multi-
agent trajectory prediction, demonstrating their ability to consider
distinct characteristics of individual agents when inferring future posi-
tions. The high computational cost of the autoregressive Transformer
decoder is a significant problem that makes it unsuitable for real-
time applications [34,35], particularly for tasks like predicting pedes-
trian movements. To tackle this issue, inspired by streaming/real-time
speech recognition methods [36,37], we design a stepwise-coordinating
decoder based on LSTM. The coordinator aggregates the correspond-
ing representations from the stepwise trajectory predictor and refines
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Fig. 2. The overall structure of MSCN. The MSCN structure mainly includes two parts: a multimodal spatial-frequency encoder and a stepwise-coordinating decoder. Green
operations occur during training only.
the prediction result through a knowledge distillation process, which
avoids error accumulation and obtains a more reasonable trajectory.

3. Method

In this section, we describe the details of our method which includes
the multimodal spatial-frequency encoder, the stepwise-coordinating
decoder, and the loss functions.

3.1. Problem formulation

Assuming that pedestrian 𝑖 appears in the field of view from a
driving vehicle 𝑗, our goal is to optimize a generative model to predict
the future trajectory of pedestrian 𝑖 in future time 𝑇𝑓𝑢𝑡 = {𝑡∗ + 1, 𝑡∗ +
2,… , 𝑡∗ + 𝛿} where 𝛿 and 𝑡∗ are the number of time steps in the future
and in historical period, respectively. The given information includes
the pedestrian attribute vector 𝐴𝑡𝑡𝑟𝑖 and the historical information
{𝐸𝑔𝑜𝑡𝑗 , 𝐵𝑜𝑥

𝑡
𝑖, 𝐹 𝑙𝑜𝑤𝑔𝑙𝑜𝑏𝑎𝑙

𝑡
𝑗 , 𝐹 𝑙𝑜𝑤𝑝𝑒𝑑

𝑡
𝑖|𝑡 ∈ 𝑇ℎ𝑖𝑠𝑡}, where the symbols 𝐸𝑔𝑜,

𝐵𝑜𝑥, 𝐹 𝑙𝑜𝑤𝑔𝑙𝑜𝑏𝑎𝑙, and 𝐹 𝑙𝑜𝑤𝑝𝑒𝑑 represent the vehicle state, pedestrian
trajectory, global optical flow information, and pedestrian optical flow
information respectively. To be specific, 𝑇ℎ𝑖𝑠𝑡 = {𝑡∗ − 𝜏 + 1, 𝑡∗ − 𝜏 +
2,… , 𝑡∗} denotes the historical time steps where 𝜏 represents the num-
ber of accessible historical time steps. 𝐸𝑔𝑜𝑡𝑗 represents the ego-motion
information of the driving vehicle. 𝐵𝑜𝑥𝑡𝑖 = {𝑥1𝑡𝑖, 𝑦1

𝑡
𝑖, 𝑥2

𝑡
𝑖, 𝑦2

𝑡
𝑖} is the

coordinates of the upper left and lower right corners of the bounding
box. 𝐹 𝑙𝑜𝑤𝑔𝑙𝑜𝑏𝑎𝑙

𝑡
𝑗 ∈ 𝑅(𝜏−1)×2×ℎ𝑔𝑙𝑏×𝑤𝑔𝑙𝑏 and 𝐹 𝑙𝑜𝑤𝑝𝑒𝑑

𝑡
𝑖 ∈ 𝑅(𝜏−1)×2×ℎ𝑝𝑒𝑑×𝑤𝑝𝑒𝑑

are the motion information of the optical flow, where ℎ𝑔𝑙𝑏, 𝑤𝑔𝑙𝑏, ℎ𝑝𝑒𝑑
and 𝑤𝑝𝑒𝑑 are height and width of two kinds of optical flow. The global
optical flow and pedestrian optical flow are divided into M and 𝑁
blocks as well as spatially averaged and pooled.

3.2. Framework overview

Fig. 2 shows the overall framework of our method, including a
multimodal spatial-frequency encoder and a stepwise-coordinating de-
coder. The encoder integrates multimodal information including ob-
served trajectory, ego-vehicle speed, optical flows, and pedestrian at-
tributes. Owing to the periodicity of pedestrian motion, a frequency-
domain enhanced Transformer processes trajectory and ego-vehicle
speed to produce a hybrid representation. The optical flow represen-
tations of ego-vehicle and pedestrians are extracted through a spatial-
domain Transformer. The attribute feature is extracted by an MLP.
Then, the representations of different modalities are fused hierarchi-
cally to obtain a feature vector as an initial hidden state of the decoder.
The decoder is a two-stage structure including a stepwise trajectory
3

predictor which generates a coarse sequence result and a coordinator
which aggregates the corresponding representation of the coarse re-
sult and outputs a refined sequence through a knowledge distillation
process.

3.3. Multimodal spatial-frequency encoder

The proposed multimodal spatial-frequency encoder captures the
pedestrian motion pattern as a latent vector by integrating multiple
modalities with Transformer-based architecture. As shown in Fig. 3,
it mainly consists of frequency-domain enhanced Transformer, spatial-
domain Transformer, and hierarchical multimodal fusion stages.

Frequency-domain enhanced Transformer. Since pedestrian mo-
tion is composed of periodic gait cycles, we can take the pedestrian
trajectory as a periodic time series. Therefore, we propose to extract
the features of the whole trajectory from the perspective of frequency-
domain combining with Transformer to capture both the global profile
of the trajectory and more detailed structures. As shown in Fig. 3(a), a
FEDformer encoder block [38] is composed of a Frequency Enhanced
Block (FEB) and a feedforward network which is both followed by a
Mixture Of Experts Decomposition block (MOEDecomp).

Since the pedestrian trajectory is obtained relative to vehicle driv-
ing, it is necessary to consider both vehicle speed 𝐸𝑔𝑜𝑗 and pedestrian
trajectory 𝐵𝑜𝑥𝑖. To capture the overall characteristic of pedestrian tra-
jectory, we utilize a Transformer-based structure which is incorporated
with a seasonal-trend decomposition approach and Fourier analysis,
i.e., FEDformer encoder [38], to encode vehicle speed and pedestrian
trajectory.

Specifically, 𝐵𝑜𝑥𝑖 or 𝐸𝑔𝑜𝑗 is coded by a linear network and then
added with a positional code to get the embedding 𝑋𝑏𝑜𝑥 or 𝑋𝑒𝑔𝑜.
Then, a Frequency Enhanced Block (FEB) with Fourier transform is
used to capture important structures of 𝑋𝑏𝑜𝑥∕𝑒𝑔𝑜 through frequency
domain mapping. To be specific, the embedding 𝑋𝑏𝑜𝑥∕𝑒𝑔𝑜 is first linearly
projected, getting 𝑄𝑏𝑜𝑥∕𝑒𝑔𝑜. Then, 𝑄𝑏𝑜𝑥∕𝑒𝑔𝑜 is converted from the time
domain to the frequency domain with Fourier transform. In frequency
domain, we use a select operator to randomly select modes as

�̃�𝑏𝑜𝑥∕𝑒𝑔𝑜 = Select( (𝑄𝑏𝑜𝑥∕𝑒𝑔𝑜)), (1)

where  denotes the Fourier transform. Afterward, the FEB performs a
reconstruction stage as

FEB(𝑄𝑏𝑜𝑥∕𝑒𝑔𝑜) = −1(Padding(�̃�𝑏𝑜𝑥∕𝑒𝑔𝑜 ⊙𝑅)), (2)

where 𝑅 is a randomly initialized parameterized kernel while −1

denotes the inverse Fourier transform. �̃� ⊙ 𝑅 is defined as �̃� ⊙ 𝑅 =
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Fig. 3. Details of the Multimodal Spatial-Frequency Encoder. (a) is the encoding stage of each modality. (b) is the hierarchical fusion stage.
∑𝐷
𝑑𝑖=0

�̃�𝑚,𝑑𝑖 ⋅𝑅𝑑𝑖 ,𝑑𝑜 ,𝑚 where 𝑑𝑖 and 𝑑𝑜 are the input and output channels
respectively. The result of �̃�𝑏𝑜𝑥∕𝑒𝑔𝑜 ⊙ 𝑅 is padded with zero and con-
verted back into the time domain through inverse Fourier transform.

Then, the trend information is decoupled by the Mixture Of Experts
Decomposition block (MOEDecomp) as follows:

𝑋trend = Sof tmax(𝐿(𝑥)) ∗ (𝐹 (𝑥)), (3)

where 𝐹 (.) represents an average pooling filter, 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐿(𝑥)) is the
weights for trends mixing. The features extracted by FEDformer from
pedestrian trajectories 𝐵𝑜𝑥𝑖 and vehicle speeds 𝐸𝑔𝑜𝑗 are 𝐻𝑏𝑜𝑥 ∈ 𝑅𝐿×𝑑

and 𝐻𝑒𝑔𝑜 ∈ 𝑅𝐿×𝑑 respectively.
Spatial-domain Transformer.
Apart from trajectory and ego-motion modalities, we also consider

information in the spatial domain. We utilize optical flow between
frames as trajectory and ego-motion data rather than image data.
This choice is motivated by the fact that optical flow represents the
instantaneous velocity of moving objects on the imaging plane, where
the central region and target boxes denote the motion of the ego-vehicle
and pedestrians, respectively [6].

For optical flow representation, we first divide the global optical
flow 𝐹 𝑙𝑜𝑤𝑔𝑙𝑜𝑏𝑎𝑙 and pedestrian optical flow 𝐹 𝑙𝑜𝑤𝑝𝑒𝑑 into 𝑁 and M
patches along the spatial dimension, resulting in spatial motion repre-
sentations of ego-vehicle 𝜙𝑔 and target pedestrian 𝜙𝑝. Then, as shown
in Fig. 3(a), 𝜙𝑔 or 𝜙𝑝 are projected into a 𝐶-dimensional space through
a fully connected layer. Afterward, we adopt multi-head attention
in Transformer blocks to jointly focus on information from different
representation subspaces at different locations and increase feature
representation ability through feed-forward network [22]. Finally, we
obtain the global optical flow spatial dynamic feature representation
𝐻𝑔𝑙𝑜𝑏𝑎𝑙 ∈ R𝑁×𝑑 and the pedestrian optical flow spatial dynamic feature
representation 𝐻𝑝𝑒𝑑 ∈ R𝑀×𝑑 .

Hierarchical multimodal fusion.
Apart from obtaining representations of trajectory, ego-motion and

optical flows, for pedestrian attributes, we apply an MLP to obtain
the attribute feature 𝐻𝑎𝑡𝑡𝑟. Then, as shown in Fig. 3(b), we perform
hierarchical fusion to integrate multiple modalities at distinct stages
4

to more effectively capture the highly dynamic motion information.
Specifically, the first level of fusion is as follows:

𝐻𝑣𝑖𝑠𝑢𝑎𝑙 = 𝐶𝑜𝑛𝑣1𝐷(𝑐𝑎𝑡(
[

𝐻𝑔𝑙𝑜𝑏𝑎𝑙 ,𝐻𝑝𝑒𝑑
]

)), (4)

𝐻𝑑𝑦𝑛𝑎𝑚𝑖𝑐 = 𝐶𝑜𝑛𝑣1𝐷(𝑐𝑎𝑡(
[

𝐻𝑒𝑔𝑜,𝐻𝑏𝑜𝑥
]

)), (5)

The matrices 𝐻𝑣𝑖𝑠𝑢𝑎𝑙 ∈ R𝐾×𝑑 and 𝐻𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ∈ R𝐿×𝑑 represent the fused
visual and motion features, respectively, where 𝐾 and 𝐿 denote the
number of visual and motion features that are combined, respectively.
It is noteworthy that temporal modality features (𝐻𝑒𝑔𝑜 and 𝐻𝑏𝑜𝑥) are
aligned along the time dimension to emphasize their temporal char-
acteristics, whereas optical flow modality features (𝐻𝑝𝑒𝑑 and 𝐻𝑔𝑙𝑜𝑏𝑎𝑙)
are concatenated along the spatial dimension to highlight their spatial
characteristics.

While there is a strong correlation among vehicle speed, pedestrian
trajectory sequences, and optical flow features, direct concatenation
operation may cause such relationships to be ignored. Therefore, in the
second level fusion process, we employ a multi-head attention mecha-
nism to capture the inherent correlations among temporal, spatial, and
attribute features, as depicted in the following equation:

𝐻𝑒𝑛𝑐𝑜𝑑𝑒𝑟 = 𝑇𝐹 (𝑐𝑎𝑡(
[

𝐻𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ,𝐻𝑎𝑡𝑡𝑟,𝐻𝑣𝑖𝑠𝑢𝑎𝑙
]

)), (6)

where 𝐻𝑒𝑛𝑐𝑜𝑑𝑒𝑟 ∈ 𝑅(𝐾+𝐿+1)×𝑑 , and 𝑇𝐹 is a Transformer encoder with
multi-head attention to finally fuse multimodal information.

3.4. Stepwise-coordinating decoder

After the encoder transforms multimodal historical information into
a vector, the proposed stepwise-coordinating decoder generates the
final prediction using a two-stage process. As shown in Fig. 2, the step-
wise trajectory predictor first generates a coarse result. Then, the coor-
dinator aggregates the corresponding representation of the coarse result
and generates refined results through a knowledge distillation process.
Although Transformer has been demonstrated in high efficiency for
multimodality data feature extraction and fusion, the heavy computa-
tional cost of the autoregressive Transformer decoder is a key issue to
prevent it in real-time applications [34,35], especially the pedestrian
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trajectory prediction task. Therefore, inspired by streaming/real-time
speech recognition methods [36,37] using Transformer as encoder and
RNN as predictor, we use RNN as the autoregressive decoder due to the
consideration of speed and memory.

Stepwise trajectory predictor.
The initial hidden state ℎ0 of RNN is obtained by flattening the en-

oded feature 𝐻𝑒𝑛𝑐𝑜𝑑𝑒𝑟. The stepwise trajectory predictor will generate
coarse result and its corresponding hidden states

[

ℎ1 …ℎ𝑛
]

, where
𝑛 = 𝛿 + 𝜏 − 1. Specifically, the stepwise trajectory predictor consists
of a historical trajectory reconstruction stage and a future trajectory
prediction stage. In each time step 𝑡 of RNN, we estimate the motion
displacement 𝑦𝑑𝑖𝑠𝑝𝑡 of the pedestrian trajectory. The decoding process is
formalized as

𝐵𝑜𝑥𝑡𝑖 = RNN(𝐵𝑜𝑥𝑡−1𝑖 , ℎ𝑡−1) + 𝐵𝑜𝑥𝑡−1𝑖 ; 𝑡 ∈ [𝑇ℎ𝑖𝑠𝑡, 𝑇𝑓𝑢𝑡], (7)

where the RNN cell estimates box coordinates’ motion displacement
𝑦𝑑𝑖𝑠𝑝𝑡 = 𝐵𝑜𝑥𝑡𝑖 − 𝐵𝑜𝑥𝑡−1𝑖 .

In the training phase, as shown in Fig. 2, for the historical trajectory
period, we take the ground-truth label of the last step 𝑦𝑡−1 as the input
of the decoder. For future trajectory periods, the input of the decoder
is the prediction result 𝑦′𝑡−1 of the last step from itself.

Coordinator. Inspired by the fact that pedestrian motion is mostly
driven by some intention or goal as global information along with the
fine-grained step-by-step process, we design a coordinator consisting
of an aggregator and a knowledge distillation strategy to take advan-
tage of global information. Specifically, the aggregator receives all the
hidden states generated by the stepwise trajectory

[

ℎ1 …ℎ𝑛
]

including
historical reconstruction and future prediction, then coordinates the
global information as

ℎ = 𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎ
(

𝜔 ×
[

ℎ1 …ℎ𝑛
]

+ 𝛽
)

, (8)

where 𝜔 and 𝛽 are learnable parameters while the activation function
𝐻𝑎𝑟𝑑𝑠𝑤𝑖𝑠ℎ [39] is used to enhance its expression ability.

Then, in order to make the generation process more comprehensive,
we introduce a knowledge distillation strategy in the coordinator as
shown in the right part of Fig. 2. It is divided into two branches, in-
cluding a teacher branch that takes the ground-truth label 𝑓𝑡−1 as input
in each step 𝑡 of the RNN decoder and a student branch that takes the
prediction result of the last step 𝑓 ′

𝑡−1 as the input of the RNN decoder.
The teacher branch and the student branch both take the aggregated
representation ℎ as the initial hidden state in order to incorporate
global information. Meanwhile, the teacher branch corrects the step-by-
step prediction of the student branch in time, guiding the step-by-step
prediction process to capture short-term motion information.

3.5. Loss functions

The proposed model is trained end-to-end using multiple losses.
Historical trajectory reconstruction loss. For historical trajectory

reconstruction, we utilize the mean square error (𝑀𝑆𝐸) loss,

𝐿ℎ𝑖𝑠𝑡 =
‖

‖

‖

𝑃 − 𝑃‖‖
‖

, (9)

where 𝑃 and 𝑃 represent the ground-truth historical trajectory and the
reconstructed trajectory respectively.

Future trajectory prediction loss. For future trajectory prediction,
inspired by the exponential L2 loss [40], we propose a loss function to
emphasize the importance of the prediction result in early steps,

𝐿𝑓𝑢𝑡 =
‖

‖

‖

𝐹 − 𝐹‖

‖

‖

× 𝑒
(𝛿−𝑇𝑓𝑢𝑡 )

𝛾 , (10)

here 𝐹 and 𝐹 are the ground-truth future trajectory and the predicted
rajectory of the student branch respectively, while 𝛾 is a hyperparame-
er used to control the decreasing trend of importance in the sequence.
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Distillation loss. For knowledge distillation training, we also adopt
he exponential L2 loss,

𝑑𝑖𝑠𝑡 =
‖

‖

‖

𝐹 − 𝐹‖

‖

‖

× 𝑒
(𝛿−𝑇𝑓𝑢𝑡 )

𝛾 , (11)

where 𝐹 is the output of teacher branch.
Then, the final loss is given by

𝐿 = 𝐿ℎ𝑖𝑠𝑡 + 𝐿𝑓𝑢𝑡 + 𝐿𝑑𝑖𝑠𝑡. (12)

4. Experiments

4.1. Datasets and metrics

In this paper, we mainly adopt two widely used public datasets to
verify the performance of our proposed method, i.e., JAAD [19] and
PIE [1]. JAAD and PIE are sampled from 2200 and 1842 pedestrians
(30 Hz) respectively and provide a large number of trajectories in the
first-person perspective traffic environment. Both datasets provide im-
age information and annotations of pedestrian crossing intentions. For
ego-motion, PIE provides detailed information on the velocity, while
JAAD only provides annotations of vehicle activities (e.g., moving
slowly, stopping, accelerating), which serve as a proxy for ego-motion.
For a fair comparison, we adopt the same ego vehicle sensor informa-
tion as in [6], such as vehicle speed and train–test split. We apply 15
frames (0.5 s) for historical scenes and 45 frames (1.5 s) for future
scenes.

There are three evaluation metrics widely used, including 𝑀𝑆𝐸
(mean squared error), 𝐶𝑀𝑆𝐸 (box center mean squared error), and
𝐶𝐹𝑀𝑆𝐸 (box center final mean squared error). All predictions are given
in pixels with lower errors indicating better performance.

4.2. Implementation details

We follow MTN [6] for all dataset preparation to have a fair
comparison. For example, the hyperparameters associated with repre-
senting optical flow data, such as the height ℎ𝑔𝑙𝑏, width 𝑤𝑔𝑙𝑏, M and
P, mirror those settings in MTN. As for training-related hyperparame-
ters, including learning rate, these are selected by following common
deep-learning methods’ practice. We have accordingly detailed these
descriptions.

For the JAAD and PIE datasets, we followed the data preparation
procedures outlined in MTN [6] to ensure consistency and fairness in
comparison. For each sample, the optical flow data comes from [6],
where the height ℎ𝑔𝑙𝑏 and width 𝑤𝑔𝑙𝑏 of the global optical flow infor-
mation are set to be 160 pixels, while the number of patches M and P
are 64 and 9 respectively, as settings in MTN. We set the observation
sequence length 𝜏 to 15 frames (0.5 s), and the prediction sequence
length 𝛿 to 45 frames (1.5 s) according to the PIE dataset’s setting.
For this task, we use attribute information including pedestrian ID, age
(represented as child (0), young (1), adult (2) or senior (3)), and gender
(represented as n/a (0), female (1) or male (2)). Our coordinator coor-
dinates and examines the hidden state and the gate state, respectively,
when it compiles the global data. Finally, the hidden state and the gate
state are transmitted to the next stage for subsequent decoding. The
sequence of trajectories is randomly flipped with a probability of 0.1
during training. We set the random seed to 42, and the total number
of training epochs to 80. The hyperparameter 𝛾 of the exponential L2
loss is set to 10. The batch size is set to 32. Following common deep-
learning methods’ practice, the Adam optimizer [42] is used, with the
learning rate initialized to 0.001. All experiments were performed on a

single GTX 3090.
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Fig. 4. Qualitative comparison results. The white color indicates the observed trajectory, and the future trajectory display corresponds to ground truth, SGNet-ED [17],
Context-Aware [41], MTN [6], and MSCN(ours).
Fig. 5. The variation of box error over time. (top) is the box error value changing
with time, and (bottom) is the box error derivative changing with time.

Table 1
Quantitative comparison on PIE dataset and JAAD datasets.

PIE JAAD
Method

𝑀𝑆𝐸 C𝑀𝑆𝐸 CF𝑀𝑆𝐸𝑀𝑆𝐸 C𝑀𝑆𝐸 CF𝑀𝑆𝐸
(0.5 s/1.0 s/1.5 s)(1.5 s)(1.5 s) (0.5 s/1.0 s/1.5 s)(1.5 s)(1.5 s)

B-LSTM [4] 101/296/855 811 3259 159/539/1535 1447 5615
TDP-MOF [43] -/-/665 566 2373 -/-/1158 1014 4143
PIE𝑓𝑢𝑙𝑙 [1] -/-/559 520 2162 -/-/- – –
PIE𝑡𝑟𝑎𝑗 [1] 58/200/636 596 2477 110/399/1248 1183 4780
MTN [6] 57/161/444 414 1627 95/325/1005 951 4010
SGNet-ED [17] 34/133/442 413 1761 82/328/1049 996 4076
Context-Aware [41]33/127/398 372 1519 78/324/1020 974 3937
Ours 30/110/334 309 1269 72/289/853 808 3209

.3. Comparisons with state-of-the-art methods

We mainly compared B-LSTM [4], TDP-MOF [43], PIE𝑓𝑢𝑙𝑙 [1],
IE𝑡𝑟𝑎𝑗 [1], MTN [6], SGNet-ED [17], and Context-Aware [41] with
ur proposed method. For the sake of fairness, for TDP-MOF, the ex-
erimental results were taken from [6], in which the input and output
ength of TDP-MOF were modified. Table 1 shows the deterministic
rediction results on both PIE and JAAD datasets, where our method
chieves significant performance improvement over existing methods.
or example, considering the metric CF𝑀𝑆𝐸 (1.5 s), which evaluates
ong-term prediction accuracy, our method improves 16.5% and 18.5%
6

Table 2
Time Complexity Comparison.

Method Para. (M) FLOPs (M) Inference time (ms)

B-LSTM 0.86 4.1 177.1
TDP-MOF 11.27 2413.63 17.4
PIE𝑓𝑢𝑙𝑙 2.52 54.1 1328.4
PIE𝑡𝑟𝑎𝑗 0.62* 2.1 254.1
MTN 0.13 3.3* 7.8*
SGNet-ED 4.36 1559.1 310.7
Context-Aware 2.97 70.1 3.3
Ours 0.64 40.4 10.6

over the best baseline [41] on the JAAD and PIE datasets, respectively.
In addition, our method also exhibits strong trajectory prediction ability
with a large reduction in the metrics 𝑀𝑆𝐸 (1.5 s) and 𝐶𝑀𝑆𝐸 (1.5 s).

As illustrated in Fig. 5 (top), we conducted a frame-by-frame anal-
ysis of the model’s predicted positions and compared them with other
models such as MTN [6], SGNet-ED [17], and Context-Aware [41]. Ad-
ditionally, in Fig. 5 (bottom), we presented the derivative of prediction
errors over time. It is notable that as the prediction horizon extends,
particularly beyond 20 frames, the derivative of prediction errors for
our model gradually diverges from those of other models. SGNet-ED,
focusing solely on a single modality, lacks environmental analysis,
leading to poorer long-term prediction robustness. While MTN and
Context-Aware are designed in Transformer-based encoder–decoder
architecture, their prediction error derivatives do not exhibit smooth
curves, indicative of suboptimal architectural designs. In contrast, our
approach incorporates various modalities and boasts a more inter-
pretable architectural design, thereby enhancing model performance
and rendering it more robust for long-term prediction, effectively at-
tenuating the exponential growth of prediction errors over time and
thus ensuring greater reliability.

Time complexity plays a critical role in pedestrian trajectory pre-
diction. Through time complexity analysis with prominent models in
this field (refer to Table 2), we ascertain that our model demonstrates
moderate levels of parameter count, computational workload, and
inference time on identical hardware. The objective of the pedestrian
trajectory prediction task is to forecast the pedestrian trajectory for the
subsequent 1.5 s (45 frames) based on a 0.5 s input (15 frames) [1,19].
Compared to the other three SOTA methods, despite higher complex-
ity than MTN, our method still satisfies real-time requirements while
significantly enhancing prediction accuracy.
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Fig. 6. Visualization of the efficacy of Multiple Modalities. The white color indicates the observed trajectory, while the future trajectory display corresponds to ground truth,
using all modal information, without using trajectory, without using vehicle speed, without using pedestrian attributes, without using global optical flow, without using pedestrian
optical flow. (Please zoom in for better viewing.).
Fig. 7. Visualization of the efficacy of Frequency-Domain Enhanced Transformer. The white color indicates the observed trajectory, while the future trajectory display corresponds
to ground truth, using FEDformer, without using FEDformer. (Please zoom in for better viewing.).
Table 3
Ablation study on multimodal information.
𝐵𝑜𝑥 𝐸𝑔𝑜 𝐴𝑡𝑡𝑟 𝐹 𝑙𝑜𝑤𝑔𝑙𝑜𝑏𝑎𝑙 𝐹 𝑙𝑜𝑤𝑝𝑒𝑑 𝑀𝑆𝐸 𝐶𝑀𝑆𝐸 𝐶𝐹𝑀𝑆𝐸

–
√ √ √ √

352 327 1353
√

–
√ √ √

436 409 1618
√ √

–
√ √

336 311 1283
√ √ √

–
√

360 335 1371
√ √ √ √

– 356 330 1352
√ √ √ √ √

334 309 1269

4.4. Visualizations

The visualization of trajectory prediction results is shown in Fig. 4.
We can find that our prediction results are significantly closer to
the ground truth trajectory compared with other methods regardless
of simple scenarios or scenarios with complicated relations, which is
consistent with our quantitative evaluations as reported in Table 1.
As shown in Fig. 4(a), our approach can provide a precise forecast
of the pedestrian’s intent to cross in front of the ego-vehicle, which
avoids a collision. In Fig. 4(b), our method predicts that the pedes-
trian walks along the sidewalk, demonstrating the ability to under-
stand global context information. Furthermore, it is observed that in
challenging scenarios, such as when pedestrian trajectories exhibit
significant spatial variations (e.g., as shown in subfigures a, g, and
h of Fig. 4), our model demonstrates pronounced advantages. This
underscores the adaptability and robustness of our model in handling
complex scenarios.

4.5. Ablation study

Multimodal information. In this part, we conduct an ablation
experiment to assess the impact of multiple-modal information. As
demonstrated in Table 3, each modality serves a distinct purpose,
and effective fusion of information maximizes their respective con-
tributions. Particularly, as shown in the second row of Table 3, the
𝐸𝑔𝑜 modality, i.e., car movement, was found to significantly influ-
ence the pedestrian’s trajectory, as it determines the alteration of the
pedestrian’s reference coordinate system.
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Table 4
Ablation study on stepwise-coordinating strategy.

Stepwise Coordinator

DE HTR Aggregator Distill 𝑀𝑆𝐸 𝐶𝑀𝑆𝐸 𝐶𝐹𝑀𝑆𝐸

–
√ √ √

347 321 1302
√

–
√ √

399 372 1472
√ √

–
√

359 332 1385
√ √

Weighted Sum
√

395 368 1529
√ √ √

– 354 328 1347
√ √ √ √

334 309 1269

Table 5
Ablation study on frequency domain enhancement.

Type DE 𝑀𝑆𝐸 𝐶𝑀𝑆𝐸 𝐶𝐹𝑀𝑆𝐸

Transformer – 357 330 1338
FEDformer – 347 321 1302
Autoformer

√

380 353 1468
Transformer

√

356 330 1335
FEDformer

√

334 309 1269

Table 6
Ablation study on historical trajectory reconstruction length.

HTR Length 𝑀𝑆𝐸 𝐶𝑀𝑆𝐸 𝐶𝐹𝑀𝑆𝐸

0 399 372 1472
5 384 357 1421
10 350 324 1321
14 334 309 1269

We also give result visualizations of our method with ablated modal-
ity as depicted in Fig. 6. The observations revealed that the absence of
specific modal information for different pedestrians has a certain effect
on the prediction accuracy of their trajectories. Nonetheless, the overall
prediction accuracy improved significantly when all modal information
was available.

Stepwise-coordinating. In order to verify the effectiveness of the
stepwise-coordinating strategy, we conduct several experiments with
different settings, including no displacement estimation (DE), no his-
torical trajectory prediction (HTR), no aggregator, replacing the aggre-
gator with a weighted summation, and no knowledge distillation. When
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replacing the aggregator, we use a weighted summation instead:

ℎ =
𝑛
∑

𝑘=1
𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝜀) × ℎ𝑘, (13)

here 𝜀 is a learnable parameter. The experimental results are shown
n Table 4. The results verify that our full model can achieve the best
erformance and all proposed components contribute to the full model.
t should be noted that without an aggregator, a weighted summation
peration can even bring counterproductive results. In addition, the
istorical trajectory prediction strategy brings a huge performance
ain, showing its importance in trajectory prediction task. Overall, the
esults demonstrate that the stepwise predictor and the coordinator are
omplementary to each other, verifying that our MSCN can sufficiently
everage the underlying human movement properties with a special
ncoder–decoder design.
Frequency-domain enhancement. In order to investigate the ef-

ectiveness of frequency-domain enhancement in the encoder, we con-
ucted a comparative ablation study by replacing FEDformer [38]
ith different Transformers, including vanilla Transformer [22] and
utoformer [44], while keeping other components fixed. In order to
erify that pedestrian motion periodicity is effectively encoded and
ecoded by our model, we also examine the impact of displacement
stimation strategy on different Transformers. The results are shown
n Table 5, where the performance of FEDformer with displacement
stimation has the best performance. We can observe whether using
isplacement estimation has a great influence on the FEDformer and
as almost no effect on the vanilla Transformer, which further validates
he effectiveness of the proposed network architecture.

We also give result visualizations of our method with different
ransformers as shown in Fig. 7. The visualizations revealed that
EDformer is more able to deal with the frequency patterns of pedes-
rian movements, leading to more accurate predictions of their future
rajectories. In contrast, methods not utilizing FEDformer may lead to
verestimation (e.g., case b) or underestimation (e.g., cases a and c) of
edestrian movements. These findings demonstrate the advantages of
EDformer in enhancing prediction accuracy for pedestrian trajectory
rediction.
Historical trajectory reconstruction length. Historical sequence

rediction is commonly used in sequence generation tasks, such as text
eneration, to enhance the feature representation ability. We found it
s also useful in our task as an ablation study in Table 4 and Table 6. As
hown in Table 6, increasing the length of historical trajectories further
mproves the model performance.
Knowledge distillation. We also conduct an additional experiment

o investigate the impact of the distillation strategy on coordinator
earning. Here we add a teacher network loss to minimize the differ-
nce between the output of the teacher network and the ground-truth
rajectory:

𝑡𝑒𝑎𝑐ℎ𝑒𝑟 =
‖

‖

‖

𝐹 − 𝐹‖

‖

‖

× 𝑒
(𝛿−𝑇𝑓𝑢𝑡 )

𝛾 . (14)

Then we set the ablation experiment including (1) no distillation strat-
egy; (2) distillation strategy with both 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 and 𝐿𝑡𝑒𝑎𝑐ℎ𝑒𝑟; (3) original
distillation strategy 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 in our model. We report the performance of
oth student and teacher branches with different settings as shown in
able 7. It should be noted that the teacher branch takes the ground-
ruth labels as input in each step of the RNN. From the results, we can
ee that with or without 𝐿𝑡𝑒𝑎𝑐ℎ𝑒𝑟, our model (student branch) can still
roduce accurate prediction results. Although adding 𝐿𝑡𝑒𝑎𝑐ℎ𝑒𝑟 can bring

significant performance gain for the teacher branch, we notice a little
drop in performance of the student branch, which indicates that a softer
regularization between teacher and student networks may bring better
8

performance as [45]. C
Table 7
Ablation study on knowledge distillation strategy for coordinator learning.

Branch 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 𝐿𝑡𝑒𝑎𝑐ℎ𝑒𝑟 𝑀𝑆𝐸 𝐶𝑀𝑆𝐸 𝐶𝐹𝑀𝑆𝐸

Student – – 354 328 1347
Teacher

√ √

72 65 241
Student

√ √

338 314 1287
Teacher

√

– 325 302 1242
Student

√

– 334 309 1269

5. Conclusion

In this paper, we present a Multimodal Stepwise-Coordinating Net-
work, namely MSCN, for first-person view pedestrian trajectory predic-
tion, which aims to make sufficient use of human motion properties. We
design a multimodal spatial-frequency encoder to effectively model the
periodicity of pedestrian motion and spatial information. In addition,
we introduce a stepwise-coordinating decoder structure to effectively
capture both short-term and long-term motion interaction. We demon-
strate that our proposed method greatly outperforms existing methods
on first-person view trajectory prediction tasks using publicly avail-
able benchmarks. By undertaking ablation studies, we are able to
further demonstrate the overall contributions of our proposed modules.
In future work, it will be interesting to apply our method to addi-
tional computer vision and robotics problems, like action prediction,
interaction prediction, and human motion simulation.

One of our method’s limitations is the lack of leveraging contextual
information from the environment, like other pedestrians’ and vehicles’
states or the semantic segmentation map. We believe that improving
upon these limitations in future work will result in a better accuracy
rate for predicting pedestrian trajectories.
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