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Abstract—Recently, in order to improve reactive fault tolerance techniques in

large scale storage systems, researchers have proposed various statistical and

machine learning methods based on SMARTattributes. Most of these studies have

focused on predicting failures of hard drives, i.e., labeling the status of a hard drive

as “good” or not. However, in real-world storage systems, hard drives often

deteriorate gradually rather than suddenly. Correspondingly, their SMART

attributes change continuously towards failure. Inspired by this observation, we

introduce a novel method based on Recurrent Neural Networks (RNN) to assess

the health statuses of hard drives based on the gradually changing sequential

SMARTattributes. Compared to a simple failure prediction method, a health status

assessment is more valuable in practice because it enables technicians to

schedule the recovery of different hard drives according to the level of urgency.

Experiments on real-world datasets for disks of different brands and scales

demonstrate that our proposed method can not only achieve a reasonable

accurate health status assessment, but also achieve better failure prediction

performance than previous work.

Index Terms—Hard drive failure prediction, SMART, health degree, recurrent neu-

ral networks
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1 INTRODUCTION

IN this cloud computing and big data era, the reliability of cloud
storage systems (data centers) is a major challenge that IT enter-
prises have to face. According to [1], [2], the hard drive is one of the
main sources of failure in today’s data centers. Although the theo-
retical annual failure rate of a single hard drive could be lower than
1 percent, the real annual failure rate observed in data centers could
exceed 10 percent [2]. It was estimated in [3] that in a petabyte-level
file system, hard drives fail almost every day—the large scale of a
data center magnifies the failure probability of hard drives, making
hard drive failures the norm rather than an exception.

In response to the problem of hard drive failure, researchers
have investigated on both reactive fault tolerance and proactive
failure prediction. Different from reactive fault tolerance (e.g.,
designing erasure codes to improve storage system reliability), pro-
active failure prediction forecasts hard drive failures before they
actually happen, and therefore can inform technicians to take
actions in advance. To improve the accuracy of proactive failure
prediction, in recent years, statistical and machine learning meth-
ods have been adopted to build prediction models based on the
SMART (Self-Monitoring, Analysis and Reporting Technology)
attributes [4], [5], [6], [7], [8], [9], [10], [11]. Although these methods
have demonstrated their effectiveness in a number of circumstan-
ces, they have clear limitations. For example, these prediction mod-
els only yield binary classification on the status of a hard drive (i.e.,

good or bad), and cannot distinguish between being close to failure
and still being far from failure. As another example, most of these
methods take a single snapshot of the SMART attributes as the
input instance for prediction, without considering the dependency
between different statuses of a hard drive in the time horizon.
These limitations motivate us to explicitly model sequential infor-
mation using SMART attributes so as to gauge the different health
statuses of hard drives.

In real-world storage systems, SMART attributes (e.g., Seek Error
Rate and Power On Hours) are logged with time stamps, in order to
monitor internal attributes of individual hard drives and to raise
alarms if any attribute exceeds its threshold. A hard drive often
deteriorates gradually, rather than abruptly. Correspondingly, the
SMART attributes change continuously towards the status of fail-
ure. Thus, it is natural to employ temporal analysis methods to
model the sequential dependency between SMART attributes over
time. RecurrentNeural Networks (RNN) have been proven an effec-
tive tool to model temporal dependency in various applications,
such as languagemodels [12], [13], speech recognition [14], machine
translation [15], and so on. This inspires us to consider leveraging
RNN in the assessment of the health status and the prediction of fail-
ure for hard drives.

Different from traditional feedforward neural networks, RNNs
can exploit their internal memory to analyze the temporal sequen-
ces of inputs. There are basically two kinds of temporal dependen-
cies: short-term dependency (such as the Markovian properties)
and long-range dependency (such as those in natural languages).
An RNN is especially effective in modeling long-range dependen-
cies. In this work, we show that the health status of hard drives
also has long-range dependency, therefore it is natural and appro-
priate to leverage RNN to assess the health status and predict fail-
ures of hard drives via the sequence of SMART attributes.
Specifically, in the learning process, we feed the SMART attributes
in each time point to the hidden layer of RNN, together with its
previously accumulated hidden states. In this way, the depen-
dency among instances will be embedded into the RNN structure.
In addition, we adopt a discrete classification method to define the
levels of health status (i.e., health degree). The discrete classifica-
tion can indicate the remaining life of hard drives, and can be used
to raise alarms if needed. Our experiments on real-world datasets
reveal that our proposed RNN-based method can not only achieve
reasonable accuracy on health status assessment, but also achieve
better failure prediction performance than previous work.

The remaining part of the paper is organized as follows. First,
we survey the existing work on hard drive failure prediction based
on SMART attributes in Section 2. Then, we propose our RNN-
based model in Section 3. After that, we present our experimental
results in Section 4. We conclude the paper in Section 5.

2 RELATED WORK

Comparedwith the traditional passive fault tolerance technique, pro-
active drive failure prediction tends to providemore opportunities to
handle potential failures in advance, and thereby greatly reduce neg-
ative impacts on system reliability and availability when failure
occurs. Accordingly, a lot of research has been done especially on the
topic of SMART based proactive fault tolerance technique.

SMART is a monitoring system that detects and reports on vari-

ous indicators of drive reliability and it is widely used for hard

drive failure prediction. Threshold-based algorithms are used to

predict the drive failure, but the performance is far from satisfying,

in that FDR (failure detection rate, the fraction of failed drives that

are correctly classified as failed) is 3-10 percent, and FAR (false

alarm rate, the fraction of good drives that are incorrectly classified

as failed) is 0.1 percent. There is still a long way to go before apply-

ing the disk drive failure prediction technology to practice.
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Many learning-based methods have been proposed to improve
the performance of drive failure prediction based on SMART
records data. Hamerly and Elkan [5] proposed two Bayesian
approaches to predict hard drive failures on a small dataset (con-
taining 1,927 disk drives in total, but only nine drives which fail)
collected from Quantum Inc. One of the methods they used was
named as NBEM and the other one was a naive Bayes classifier.
Under 1 percent FAR, NBEM achieved 35-40 percent prediction
accuracy, and the naive Bayes classifier achieved 55 percent.

Hughes et al. [6] proved that most of the meaningful SMART
attributes are non-parametrically distributed. Inspired by this
observation, they used the Wilcoxon rank-sum test for predicting
hard drive failure. They proposed two different strategies: a multi-
variate test and an OR-ed single attribute test. The highest FDR
achieved by these two methods was 60 at 0.5 percent FAR on a
small dataset of 3,744 drives.

Murray et al. [7] compared the performance of four different

methods including SVM, unsupervised clustering, rank-sum and

reverse arrangements test. The results showed that the rank-sum

method achieved the best performance (33.2 percent FDR at 0.5

percent FAR). They also proposed a new algorithm named mi-NB

(Multiple-Instance Naive Bayes) [4]. The results showed that rank-

sum test outperformed SVM for a certain small set of SMART

attributes (28.1 percent FDR at 0 percent FAR). When using all fea-

tures, SVM achieved the best performance (50.6 percent detection

rate with 0 percent FAR). Note that all of the methods compared in

their work were evaluated on a small dataset containing only 369

disk drives (good and failed drives are about half and half), which

is also used in several other publications. But this dataset does not

match the situation in real-world data centers. Moreover, since it

was collected before 2003, the SMART information format is not

consistent with the current SMART standard. These factors under-

mine the practicability of models.

Wang et al. [10] proposed a method for drive anomaly predic-
tion based on Mahalanobis distance. The experimental results on
the dataset used in [5] showed that the method with prioritized
attributes selected by FMMEA (Failure Modes, Mechanisms and
Effects Analysis) performed better than the one with all attributes.
In their later work [11], by using minimum redundancy maximum
relevance, the redundant attributes were filtered out from the
attributes set selected by FMMEA. They then built up a baseline
Mahalanobis space using the good drive data of the critical param-
eters. This approach could detect nearly 67 percent of the failed
drives at 0 percent FAR, and most of the failed drives could be
detected about 20 hours in advance.

Recently, Backpropagation Artificial Neural Network [9] and
Classification Trees [16] have been shown to achieve great
improvement on predicting drive failures based on SMART attrib-
utes. A real-world dataset containing 23,395 drives was used in
these papers. The BP ANN model could reach an excellent FDR
which was up to 95 percent with a reasonable low FAR. While the
Classification and Regression Tree models perform better in pre-
diction performance as well as stability and interpretability.

The aforementioned methods all take every SMART sample as
an input instant, but ignore the time-sequence information of
SMART attributes which can reflect trends in the changing health
status of drives. Zhao et al. [8] applied Hidden Markov Models
and Hidden Semi-Markov Models to predict hard drive failures.
They used the time-sequence information of SMART attributes. By
using the best single attribute, the HMM and HSMM models had
an FDR of 46 and 30 percent, respectively. Even by combining the
best two attributes, the HMM model only reached a FDR of 52 per-
cent. Although their models outperformed many other methods
which paid no attention to the relationship of attribute values over
time, their performance is still far below the state of the art.

Meanwhile, a few most recent studies leveraging Recurrent
Neural Networks for modeling the long-term dependent sequen-
tial data have achieved great success. For example, the RNN lan-
guage model [12], [13] successfully leveraged long-span sequential
information within a massive language corpus, which results in
better performance than the traditional neural networks language
model [17]. Moreover, RNN-based handwriting recognition [18],
speech recognition [14], and machine translation [15] systems have
also led to much improvement in their corresponding tasks. Com-
pared to traditional feedforward neural networks and other short-
term dependency models, RNN has demonstrated its strong
capability to exploit sequential data due to its specific recurrent
network structure.

In contrast to all the aforementioned works, in this paper, we
present a RNN-based method to leverage sequential information
for predicting hard drive failures. Aiming at monitoring the health
status of hard drives, we also adopt a multi-level classification in
the output layer of the neural network. As a result, our new model
is able to both predict failures and give drive health statuses using
sequential SMART information, and is more accurate in predicting
and more useful in practice than previous works.

3 THE PROPOSED METHOD

We argue that the hard drive failure prediction problem belongs to
long-range dependency in Section 4.2, so an RNN-based model
with ability of modeling long-range dependent sequences is natural
for this task. In this section, we introduce the RNN-basedmodels.

3.1 Model

Artificial neural networks (ANNs) are a family of models inspired
by biological neural networks and are generally presented as inter-
connected “neurons”. The connections have numeric weights that
can be tuned based on experience, which make them capable of
learning. RNNs are a class of artificial neural networks where con-
nections between neurons form a directed cycle, which allows it
model temporal behaviors.

In our work, we use an architecture that is usually called a sim-
ple recurrent neural network as Fig. 1 shows. This architecture is
very easy to implement and train. It consists of an input layer i, an
output layer y, a hidden layer h with recurrent connections, plus
the corresponding weight matrices. Input to the network in time t

is vector iðtÞ that represents the features of SMART attributes at
time t. We use hðtÞ to denote the output of the hidden layer in time
t, which also maintains a representation of the history of SMART
attributes. The recurrent connections R between hðt� 1Þ and hðtÞ

Fig. 1. RNN training process with the BPTT algorithm. Unfolding step is set to 3 in
this figure.
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can propagate sequential signals, where the vector hðt� 1Þ repre-
sents the values in the hidden layer computed from the previous
step. The activation values of the hidden and output layers are
computed as:

hðtÞ ¼ f
�
U iðtÞ þRhðt� 1Þ�;

yðtÞ ¼ g
�
V hðtÞ�;

where fðzÞ and gðzÞ are sigmoid and softmax activation functions
(the softmax function in the output layer is used to ensure that the
outputs form a valid probability distribution, i.e., all outputs are
greater than 0 and their sum is 1):

fðzÞ ¼ 1

1þ e�z
;

gðzmÞ ¼ ezmP
k e

zk
:

The hidden layer can be considered as an internal memory
which records dynamic sequential states. The recurrent structure is
able to capture the historical context of health statuses. This makes
RNN suitable for the tasks related to sequential prediction.

In our method, iðtÞ represents the SMART attributes and hðtÞ
represents sequential information of a hard drive’s previous health
status. Thus, our prediction depends not only on the current input
features, but also on the sequential historical information. The vec-
tor in the output layer yðtÞ represents the health degree probability
distribution.

3.2 Health Degree

As observed in real-world data centers, before a hard drive fails
completely, there is a gradual trend towards abnormal status in
SMART attributes. That is, there is a gradual process of deteriora-
tion in health status. In this paper, we quantify the health status of
a hard drive as the time before it breaks down, and we define a
drive’s health degree by dividing the remaining time into different
ranges according to the time before failure. For example, if the
remaining time is very short, this means its health status is quite
poor, and it is urgent for the technician to handle this failure alert.

Compared with the traditional binary failure prediction meth-
ods, health status prediction can significantly improve the reliabil-
ity and availability of large scale distributed storage systems.
Technicians or warning handlers could schedule the recovery of
different hard drives and allocate system resources according to
failure urgency and the remaining life time, so that we can balance
the quality of user services and data migration. In a multiple failure
situation, migration priority can be decided according to the health
status of the drives. As a result, the probability of missing the most
urgent failures decreases, and the relevant economic loss would
also be avoided.

Fig. 2 gives a possible instance of health degree settings where
the health degree is divided into six classes according to the
remaining time. Level 6 indicates that the disk drive works prop-
erly. Level 5 represents that the health status of the disk drive is
fair. Levels 1-4 means that the disk drive is going to fail. In particu-
lar, Level 1 is the “red alert” which means that the remaining time
is less than 72 hours for the current hard drive, so the alert must be
dealt with immediately. Note that the time intervals for different
health degree levels could be set differently, and the time intervals

could be more sparse for prediction times far away from the fault
time because of the low urgency.

We use this health degree setting in all of the experiments in
this paper. Since we just choose this setting intuitively and we
don’t compare this setting with any other health degree setting, it
might be possible to get better results with other carefully selected
health degree settings.

3.3 Training

In the objective function, we aim to maximize the likelihood of cor-
rect prediction:

fð�Þ ¼
XN
t¼1

log ylt ðtÞ; (1)

where the training samples are labeled t ¼ 1 . . .N and lt is the
index of the correctly assessed health degree for the tth sample.

The classical backpropagation for feedforward neural network
training does not leverage some potential useful information such
as the previous n samples of the training data, which is also
related to the failure prediction and health degree assessment.
Thus, in this work, we use another standard training method
called “Backpropagation Through Time” or BPTT, which is a gen-
eralization of backpropagation for feedforward networks. BPTT
was proposed in [19], and has been used in many practical appli-
cations, such as the RNN language model [12], [14]. Although
BPTT may lead to local optimal values, it is much more efficient
than other global optimization methods, especially on large data
set. Actually, for common training sets and reasonable choices of
neural network architecture and parameters, BPTT often effi-
ciently finds a local optimum of the objective function that is
good enough for practical purposes. Since we aims to deal with
the large-scale training data and to perform on-line learning,
BPTT is a good choice.

We apply the BPTT algorithm to the RNN based health degree
assessment models as shown in Fig. 1. The overall training pipeline
can be unfolded into a deep neural network with n hidden layers,
where the recurrent weight matrices R are identical and shared
among these hidden layers. In this approach, the hidden layer of
RNN can actually exploit the information of the most recent inputs
and put more importance to the latest input, which matches the
notion of sequential dependency.

The network is trained using Stochastic Gradient Descent
(SGD). The gradient of the output layer is computed as

eoðtÞ ¼ dðtÞ � yðtÞ;
where yðtÞ is the assessed health degree probability, and dðtÞ is the
target 1-of-v vector indicating the health degree that it belongs to.
The weights V between the hidden layer hðtÞ and output unit yðtÞ
are updated as

V ðtþ 1Þ ¼ V ðtÞ þ hðtÞeoðtÞTa� V ðtÞb;
where a is the learning rate, b is L2 regularization parameter, and

eoðtÞT is the transposition of eoðtÞ. Then, gradients of errors are
propagated from the output layer to the hidden layer as

ehðtÞ ¼ dhðeoðtÞT V; tÞ;
where the error vector is obtained using the function dh that is
applied element-wise

dhjðx; tÞ ¼ xhjðtÞð1� hjðtÞÞ:

The weight matrices U between the input layer iðtÞ and the hidden
layer hðtÞ are then updated as

Fig. 2. An example of health degree settings. The health status of hard drive is
splitted into six health degree levels. The closer to the time point when the hard
drive break down, the lower the health degree is.
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Uðtþ 1Þ ¼ UðtÞ þ iðtÞehðtÞTa� UðtÞb:
The recurrent weight matrices R are updated as

Rðtþ 1Þ ¼ RðtÞ þ hðt� 1ÞehðtÞTa� RðtÞb:

3.4 Inference

We illustrate the testing process of the RNN based health degree
assessment model in Fig. 3. The test data is also organized as
ordered SMART attributes sequences. We feed forward the cur-
rent SMART sample, together with the outputs of the hidden
state of the previous SMART sample to get the current hidden
state. Then the model makes the assessment.

4 EXPERIMENTAL RESULTS

In this section, we justify what kind of dependency the health sta-
tus assessment and failure prediction has, and test different aspects
of the performance of our proposed method in a series of
experiments.

4.1 Dataset

We used a dataset collected from a real-word data center which
was released in [9] in our experiment. The brand and environment
are two key factors which can affect the reliability of drives, so we
collect two more datasets from another real-word data center to
evaluate our proposed method and other methods. These three
datasets are represented as “W”, “S” and “M” according to their
brand. All of the drives in these datasets were labeled to be either
good or not. Table 1 lists the details of the datasets.

We use these three datasets to evaluate our proposedmethod and
other models. Each dataset is divided into training and test sets. For
each good drive, we take the earlier 70 percent of the samples within
a week as training data, and the later 30 percent as test data. Since
failed drives are much less common than good drives, we used all
failed drives and randomly divide them into training and test sets in
a 7 to 3 ratio.

We follow the previous work [4], which used three non-
parametric methods: reverse arrangement test, rank-sum test and

z-scores to select features from 23 meaningful attributes in SMART
records. Afterwards, there were 10 attributes left, as shown in
Table 2. Each SMART attribute has a six-byte width raw value
which is vendor-specific and a normalized value ranging from 1 to
253. Since some normalized values lose precision and their corre-
sponding raw values are more sensitive to the health condition of
drives, we select the raw values of the third and fifth attributes in
addition to the normalized values of other attributes in Table 2 to
build our models. The 6-hour change rates of three attributes (the
first, third and fourth attributes in Table 2) were also selected. To
verify the effectiveness of the selected features, we apply our pro-
posed RNN model to several different feature sets. Similar to the
experimental results in [16], the 13 selected features outperform
other feature sets in hard drive failure prediction task on dataset
“W”. Since some attribute values were not recorded for datasets
“S” and “M”, only the 1st, 3rd, 5th, 6th, 8th, 10th and 6-hour change
rates of first and third attributes were selected for training and test-
ing on datasets “S” and “M”. We rescale the range of all selected
features to ½0; 1� by

xnormal ¼ x� xmin

xmax � xmin
;

where x is the original value of a feature, and xmax and xmin are the
maximum and minimum values of this feature in training set,
respectively. Also, xnormal is set to 1 if x in test set is larger than
xmax, and it is set to 0 if x in test set is smaller than xmin.

4.2 Dependency Analysis

For hard disk health status assessment and failure prediction,
although the health status of disks change gradually and mostly
monotonically, the SMART attributes are not stable. For instance,
“Temperature Celsius” may change significantly if the disk is fre-
quently read or written towithin a short period. To avoid this kind of
change of attributes confusing the drive’s health assessment, the tem-
perature of the disk over a long time period should be considered.

The long-range dependency can be regarded as a kind of high-
order Markov property: the current state is highly correlated with
earlier states. In this paper, we measured the Markov dependency
by comparing the Conditional Entropy of different order feature
representations. Let time sequence data fa1; a2; . . . ; ang denote the
features from time point 1 to time n. The Conditional Entropy can
be defined as:

HðY jXÞ ¼ �
X
x2X

pðxÞ
Xm
j¼0

pðyjjxÞlog pðyjjxÞ; (2)

where y is the health degree,m is the number of health degree labels

(m ¼ 6 in this paper). For order-1 feature representations, x ¼ at

(the features at time t). For order-n feature representations,

x ¼ atat�1 � � � at�nþ1 (merging the features from time t to t� nþ 1).
We keep one decimal place for all float features. Fig. 4 shows the
Conditional Entropy for varying order feature representations on
dataset “W”.

We see that the conditional entropy significantly decreases from
order-1 to order-6. This task should belong to long-range
dependency.

Fig. 3. The testing process of the RNN-based health degree assessment model. The
inputs are the sequential SMART records. The outputs of the hidden state are com-
puted based on the ðt� 1Þth SMART sample and are used as the inputs, together
with the tth SMARTsample, to assess the health degree of disk drive at time t.

TABLE 1
Dataset Details

Brand # of Good Drives # of Drives which Fail

“W” 22,790 434
“S” 38,819 170
“M” 10,010 147

TABLE 2
Selected Attributes in SMART Records

ID Attributes ID Attributes

1 Raw Read Error Rate 6 Spin Up Time
2 Reported Uncorrectable Errors 7 High Fly Writes
3 Reallocated Sectors Count 8 Temperature Celsius
4 Hardware ECC Recovered 9 Seek Error Rate
5 Current Pending Sector Count 10 Power On Hours
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4.3 Compared Methods

The experiments in this paper focus on two tasks: one is failure pre-
diction and the other is health degree assessment. For failure pre-
diction, we compare RNN with other five methods as listed below.

• HMM. Following the method of [8], we separately train
two Hidden Markov Models with a mixture of Gaussian
outputs for health disk drives (Positive model) and failure
disk drives (Negative model) based on our selected fea-
tures. A test drive would be predicted to fail if the differ-
ence between the sequence log-likelihood observed from
positive model and negative model are both greater than
the threshold. Otherwise, it is predicted as healthy.

• Binary NN. Following the method of [9], Binary NN is an
artificial neural network whose output layer only contains
one node. A drive would be predicted to fail only if the
output of the neural network is smaller than a threshold.
Otherwise, the drive would be predicted to be healthy.

• CT. Following the method based on classification tree [16].
To build the classification tree, information gain is used as
splitting function. And the outputs of CT are also binary,
which make it only able to predict whether the drive is
healthy or not.

• Multiclass NN. The architecture of Multiclass NN is similar
to Binary NN, except its output layer, which contains six
nodes, can be used to assess the health degree.

• CRF.We also apply Conditional RandomFields (CRFs)with
MIRA training formulticlass health degree assessment.

The outputs of HMM and CT are binary, which only predicts
whether the drive is healthy or not rather than the health degree
of it. Although the probabilistic output of Binary NN can be
used to distinguish the degree of failure, it is not natural to
assess the health degree according to a probabilistic output of a
binary classification model, because it gives no information
about how much time is left before the disk breaks down. Thus
we only compare Multiclass NN, CRF and RNN for the health
degree assessment task.

4.4 Experimental Setup

For CT and Binary NN, we follow the settings of [16] and [9],
respectively, and we obtain similar results. For HMM, we also
follow the experimental setting of [8]; several HMMs with the
number of states varying from 10 to 50 were trained, and the
one that maximizes the sequence log-likelihoods of training
sequences was selected. For CRF, we use the selected features as
unigram features along with the combination of the previous
output health degree and current attributes as bigram features
for training. Note that we fix the configurations and parameters
of RNN rather than fine tune them on different datasets in our
experiments. Specifically, the coefficient of weight decay is set to

10�7; the learning rate is initially set to 0.1, and we divide the

learning rate by 2 every 100 training epochs; the number of
training epochs is 2,000; and the size of hidden layer is 10.
Instead of using all of the healthy drives for training [9], [16],
we randomly select a portion of the healthy drives for training
HMM, CRF, RNN and Multiclass NN, ensuring that the number
of healthy drives for training is 10 times the number of failed
drives. We perform all the experiments on a standard PC desk-
top since none of these methods require significant computer
resources. The training of every method compared in this paper
takes under 10 minutes, and the speed of failure/health degree
prediction is nearly 10,000 disks per second. The time cost of
our proposed method is suitable for on-line real-time monitor-
ing of large-scale data centers.

SMART attributes of a hard drive within a short time interval
are often very similar, in which case they are mapped to the same
health degree. In order to leverage the relatively long sequence of
historical information to assess the current health degree, we only
sample one SMART record in each 24-hour period for training
sequence dependency models HMM, CRF and RNN. As for the
test data, we split the SMART records into 24 groups fD1;
D2; . . . ; D24g, where Di is the collection of SMART records of the
ith hour in each 24-hour period. Then we separately test these 24
groups of data by using the trained model, and merge the 24 sets
of prediction results together according to time stamps.

As we described in Section 3, the unfolding structure plays an
important role in modeling sequential dependency. Since the
number of unfolding steps can directly determine the depth of
sample sequence modeling, we delve into the performance of fail-
ure detection as the number of unfolding steps varies. According
to our experimental results in Fig. 5, FDR initially increases with
an increasing number of unfolding steps. The best FDR is attained
when unfolding six steps for RNN, after which the performance
drops down. This conclusion is consistent with the dependency
analysis, that the order-6 Markov Model is more suitable for this
task. Therefore, we set the number of unfolding steps of RNN to
6 for the datasets in this paper. By checking the error terms dur-
ing the BPTT process, we discover that the backpropagated error
vanishes after six steps of unfolding, which explains why a larger
number of unfolding step is detrimental.

We apply the voting-based failure detection algorithm [9] to
evaluate the hard disk failure prediction performance of CT and
Binary NN. Given the last N consecutive samples before a time
point, the voting-based failure detection algorithm predicts that a
drive is going to break down if more than N=2 samples are classi-
fied as failed, otherwise the drive will be classified as healthy. For
Multi-class NN, CRF and RNN, we interpret the outputs with
health degree level 1-4 as failed, and level 6 as healthy. Since the
fair health status corresponding to level 5 is regarded as a interme-
diate state between healthy and failed, we don’t use it for voting.

Fig. 4. Conditional entropy for different order feature representations.

Fig. 5. Failure detection rate for RNN on dataset “W” as the number of unfolding
steps varies.
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Here we propose two new voting-based failure detection algo-
rithms for Multiclass NN, CRF and RNN. Given the last N conse-
cutive samples before a time point, the failure detection rate
follows two different criteria:

• VAT2H (Voting Algorithm which Tends to Health):

Ld ¼ Healthy; if
P4

i¼1 C
d
i � Cd

6

Failure; if
P4

i¼1 C
d
i < Cd

6

(
:

• VAT2F (Voting Algorithm which Tends to Failure):

Ld ¼ Healthy; if
P4

i¼1 C
d
i > Cd

6

Failure; if
P4

i¼1 C
d
i � Cd

6

(
:

where
P6

i¼1 Ci ¼ N , and Ld is the failure prediction results for drive d,

and Cd
i is the number of samples which are predicted as health level i

for disk d. Health level 5 abstains from voting in the two failure detec-

tion criteria above.

4.5 Failure Prediction for Hard Drives

Fig. 6 plots the prediction results of Multiclass NN, CRF and RNN
using the two different voting-based failure detection algorithms
on dataset “W”. As expected, VAT2H leads to lower FAR than
VAT2F in that more drives tend to be predicted as healthy, while
VAT2F leads to higher FDR than VAT2H. When 47 voters are
used, RNN and Multiclass NN both achieved their best perfor-
mance. The FDR of RNN is higher than that of the other two mod-
els using either of the two voting algorithms.

Table 3 reports the overall FDR and FAR of the six models using
the three datasets as test sets, which shows that our proposed
method not only performs more steadily, but also has stronger uni-
versality. We see that RNN can obtain higher FDR and lower FAR
simultaneously, compared with sequence-independent models.

RNN also outperforms other two sequence-dependent models:
HMM and CRF. In general, HMM and CRF are effective on short-
term dependent tasks, while the RNN is more suitable for long-
term dependent tasks.

Another important variable is how long in advance we can
detect an impending drive failure. The goal that hard drive manu-
facturers want SMART technology to achieve is more than 24 hours
in advance. The average time in advance of our proposed RNN
based failure prediction method is 241.6 hours (using VAT2F) and
208.6 hours (using VAT2H) on dataset “W”, 494 hours (using

Fig. 6. Performance of CRF, RNN and Multiclass NN on the two voting-based fail-
ure detection algorithm VAT2H and VAT2F on dataset “W”. The points on each line
in the figure are obtained by the number of voters N ¼ 3; 7; 15; 21; 41; 45; 47 from
right to left.

TABLE 3
Overall Performance of Different Models in Terms of FDR and FAR

Methods “W” “S” “M”

FDR (%) FAR (%) FDR (%) FAR (%) FDR (%) FAR (%)

HMM 57.69 0.34 94.12 0.38 75.56 1.02
Binary NN 84.21 0.07 94.12 0.08 95.56 0.84
CT 93.23 0.01 96.08 0.45 95.56 0.68
Multiclass NN (VAT2F) 83.21 0.70 92.16 0.10 95.56 0.60
Multiclass NN (VAT2H) 83.21 0.60 92.16 0.09 93.33 0.34
CRF (VAT2F) 85.50 0.23 92.16 0.09 68.88 0.10
CRF (VAT2H) 85.50 0.22 92.16 0.08 60.00 0.04
RNN (VAT2F) 97.71 0.06 96.08 0.05 97.78 0.59
RNN (VAT2H) 87.79 0.004 96.08 0.04 97.78 0.03

Fig. 7. Health level assessment results of 10 randomly selected failed drives by
using Multiclass NN, CRF and RNN.
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VAT2F) and 494.9 hours (using VAT2H) on dataset “S”, and 369.4
hours (using VAT2F) and 462.8 hours (using VAT2H) on dataset
“M”, which is sufficient for backing up data before the failure actu-
ally occurs.

4.6 Health Degree Assessment for Hard Drives

In this section, we evaluate the performance of the health degree
assessments of RNN, CRF and Multiclass NN. First, we introduce
the evaluation criteria for the health degree assessment results:

• Hacc: The accuracy of the health level assessment for all test
disks at every time point.

• HTSOL
acc (tolerant skipping one level): Hacc with the added

condition that we can tolerate assessment mistakes by one
health level. For example, it is considered acceptable if a
time point with health level 3 is assessed as health level 2
or 4.

HTSOL
acc gives a rough estimate of health degree so it is also valu-

able in practice. We perform case studies on health degree assess-
ment problems. We randomly select 10 failed drives from test set
of “W” and evaluated them using Multiclass NN, CRF and RNN.
Fig. 7 shows the health degree assessment results. From this figure,
we find that RNN achieves higher assessment accuracy than the
other two models. For the wrongly classified cases, the health
degree assessment results of RNN are always clustered around the
ground truth, while the wrongly assessed results of Multiclass NN
and CRF are scattered.

Table 4 reports the hard disk health degree assessment perfor-
mance of Multiclass NN, CRF and RNN using the three datasets as
test sets. We observe that the performance gaps between three
models are very small on healthy drives. This is because it is not
difficult for a classifier to identify a good drive, but it is hard to
identify a failed drive and classify it into the right health degree
before it breaks down. The overall hard disk health degree assess-
ment performance above shows the effectiveness of RNN model,
which clearly outperforms the sequence independent models and
the short-term dependent models.

5 CONCLUSION

In this paper, we propose a recurrent-neural-network-based model
for predicting hard disk drive failure and giving health degrees,
which treats the observed SMART attributes as time-sequence
data. Experimental results show that our RNN based methods can
achieve better performance than other sequence independent mod-
els and short-term sequence dependent models.
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acc (%) Hacc (%) HTSOL
acc (%)

Multiclass NN Healthy 99.19 99.40 99.84 99.94 99.40 99.73
Failure 16.01 43.34 35.57 58.783 36.03 58.63
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RNN Healthy 99.73 99.93 99.91 99.99 99.66 99.97
Failure 41.05 64.86 37.30 60.80 61.75 90.934
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