
Reinforcement Learning for Learning Rate Control

Chang Xu1,Tao Qin2,Gang Wang1,Tie-Yan Liu2

1College of Computer and Control Engineering, Nankai University, Tianjin, China
2Microsoft Research, Beijing, China

1{changxu, wgzwp}@nbjl.nankai.edu.cn, 2{taoqin, tie-yan Liu}@microsoft.com

Abstract
Stochastic gradient descent (SGD), which updates
the model parameters by adding a local gradient
times a learning rate at each step, is widely used in
model training of machine learning algorithms such
as neural networks. It is observed that the models
trained by SGD are sensitive to learning rates and
good learning rates are problem specific. We pro-
pose an algorithm to automatically learn learning
rates using neural network based actor-critic meth-
ods from deep reinforcement learning (RL). In par-
ticular, we train a policy network called actor to de-
cide the learning rate at each step during training,
and a value network called critic to give feedback
about quality of the decision (e.g., the goodness of
the learning rate outputted by the actor) that the ac-
tor made. The introduction of auxiliary actor and
critic networks helps the main network achieve bet-
ter performance. Experiments on different datasets
and network architectures show that our approach
leads to better convergence of SGD than human-
designed competitors.

1 Introduction
While facing large scale of training data, stochastic learning
such as stochastic gradient descent (SGD) is usually much
faster than batch learning and often results in better models.
An observation for SGD methods is that their performances
are highly sensitive to the choice of learning rate [LeCun et
al., 2012]. Clearly, setting a static learning rate for the whole
training process is insufficient, since intuitively the learning
rate should decrease when the model becomes more and more
close to a (local) optimum as the training goes on over time
[Maclaurin et al., 2015]. Although there are some empirical
suggestions to guide how to adjust the learning rate over time
in training, it is still a difficult task to find a good policy to
adjust the learning rate, given that good policies are problem
specific and depend on implementation details of a machine
learning algorithm. One usually needs to try many times and
adjust the learning rate manually to accumulate knowledge
about the problem. However, human involvement often needs
domain knowledge about the target problems, which is inef-
ficient and difficult to scale up to different problems. Thus,

a natural question arises: can we learn to adjust the learn-
ing rate? This is exactly the focus of this work and we aim to
learn learning rates for SGD based machine learning (ML) al-
gorithms without human-designed rules or hand-crafted fea-
tures.

By examining the current practice of learning rate con-
trol/adjustment, we have two observations. First, learning
rate control is a sequential decision process: We set an initial
learning rate at the beginning, and then at each step we de-
cide whether to change the learning rate and how to change it,
based on the current model and loss, training data at hand, and
maybe history of the training process. As suggested in [Orr
and Müller, 2003], one well-principled method for estimat-
ing the ideal learning rate that is to decrease the learning rate
when the weight vector oscillates, and increase it when the
weight vector follows a relatively steady direction. Second,
although at each step some immediate reward (e.g., the loss
decrement) can be obtained by taking actions, we care more
about the performance of the final model found by the ML
algorithm. Consider two different learning rate control poli-
cies: the first one leads to fast loss decrease at the begin-
ning but gets saturated and stuck in a local minimum quickly,
while the second one starts with slower loss decrease but re-
sults in much smaller final loss. Obviously, the second policy
is better. That is, we prefer long-term rewards over short-term
rewards.

Combining the two observations, it is not difficult to see
that the problem of finding a good policy to control/adjust
learning rate falls into the scope of reinforcement learning
(RL) [Sutton and Barto, 1998]. Inspired by the recent suc-
cess of RL for sequential decision problems, in this work, we
leverage RL techniques and try to learn learning rate for SGD
based methods.

We propose an algorithm to learn learning rate within the
actor-critic framework [Sutton, 1984; Sutton et al., 1999;
Barto et al., 1983; Silver et al., 2014], which is widely used
in RL. An actor network is trained to take an action that de-
cides the learning rate for current step, and a critic network is
trained to give feedback to the actor network about long-term
performance and help the actor network to adjust itself so as
to perform better in the future. To reduce oscillation during
training, we take gradient disagreement among training sam-
ples into account. By feeding different training samples to
the actor network and the critic network, learning rate is en-

ar
X

iv
:1

70
5.

11
15

9v
1 

 [
cs

.L
G

] 
 3

1 
M

ay
 2

01
7



couraged to be small when gradients oscillate, which is con-
sistent with the suggestion for ideal learning rate strategy in
[Orr and Müller, 2003]. A series of experiments on different
datasets and network architectures validate the effectiveness
of our proposed algorithm for learning rate control.

The main contributions of this paper include:

• We propose to use actor-critic based auxiliary networks
to learn and control the learning rate for ML algorithms,
so that the ML algorithm can achieve better conver-
gence.
• Long-term rewards are exploited in our approach rather

than only immediate rewards (e.g., the decrease of loss
for one step). The expected total decrease of loss in fu-
ture steps is modeled by the critic network, so that the
actor can make far-sighted decision for learning rate.

2 Related Work
We review some related work in this section.

2.1 Improved Gradient Methods

Our focus is to improve gradient based ML algorithm through
automatic learning of learning rate. Different approaches
have been proposed to improve gradient methods, especially
for deep neural networks.

Since SGD solely rely on a given example (or a mini-batch
of examples) to compare gradient, its model update at each
step tends to be unstable and it takes many steps to converge.
To solve this problem, momentum SGD [Jacobs, 1988] is pro-
posed to accelerate SGD by using recent gradients. RMSprop
[Tieleman and Hinton, 2012] utilizes the magnitude of re-
cent gradients to normalize the gradients. It always keeps
a moving average over the root mean squared gradients, by
which it divides the current gradient. Adagrad [Duchi et al.,
2011] adapts component-wise learning rates, and performs
larger updates for infrequent and smaller updates for fre-
quent parameters. Adadelta [Zeiler, 2012] extends Adagrad
by reducing its aggressive, monotonically decreasing learn-
ing rate. Instead of accumulating all past squared gradients,
Adadelta restricts the window of accumulated past gradients
to some fixed size. Adam [Kingma and Ba, 2014] computes
component-wise learning rates using the estimates of first and
second moments of the gradients, which combines the advan-
tages of AdaGrad and RMSProp.

[Senior et al., 2013; Sutton, 1992; Darken and Moody,
1990] focus on predefining update rules to adjust learning
rates during training. A limitation of these methods is that
they have additional free parameters which need to be set
manually. [Schaul et al., 2013] proposes a method to choose
good learning rate for SGD, which relies on the square norm
of the expectation of the gradient, and the expectation of
the square norm of the gradient. The method is much more
constrained than ours and several assumption should be met.
Another recent work [Daniel et al., 2016] investigates sev-
eral hand-tuned features and uses the Relative Entropy Policy
Search method as controller to select step size for SGD and
RMSprop.

2.2 Reinforcement Learning
Since our proposed algorithm is based on RL techniques, here
we give a very brief introduction to RL, which will ease the
description of our algorithm in next section.

Reinforcement learning [Sutton, 1988] is concerned with
how an agent acts in a stochastic environment by sequentially
choosing actions over a sequence of time steps, in order to
maximize a cumulative reward. In RL, a state st encodes
the agent’s observation about the environment at a time step
t, and a policy function π(st) determines how the agent be-
haves (e.g., which action to take) at state st. An action-value
function (or, Q function) Qπ(st, at) is usually used to denote
the cumulative reward of taking action at at state st and then
following policy π afterwards.

Many RL algorithms have been proposed [Sutton and
Barto, 1998; Watkins and Dayan, 1992], and many RL algo-
rithms [Sutton, 1984; Sutton et al., 1999; Barto et al., 1983;
Silver et al., 2014] can be described under the actor-critic
framework. An actor-critic algorithm learns the policy func-
tion and the value function simultaneously and interactively.
The policy structure is known as the actor, and is used to
select actions; the estimated value function is known as the
critic, and it criticizes the actions made by the actor.

Recently, deep reinforcement learning, which uses deep
neural networks to approximate/represent the policy function
and/or the value function, have shown promise in various do-
mains, including Atari games [Mnih et al., 2015], Go [Silver
et al., 2016], machine translation [Bahdanau et al., 2016],
image recognition [Xu et al., 2015], etc.

3 Method
In this section, we present an actor-critic algorithm that can
automate the learning rate control for SGD based machine
learning algorithms.

Optimizee
Actor Network

𝑠𝑡

First layer

𝛼𝑡
Action

Critic Network

Automatic Learning Rate Controller

𝑠i
𝑡 ,

First layer

𝑄

𝛼i
𝑡

Reward

𝜋𝜃 𝑠𝑡 = 𝛼𝑡 𝑄𝜑 𝑠𝑡 , 𝛼𝑡

∆𝑤

𝑠𝑡 = 𝜒(w𝑡 , 𝑋 )

Last layer

.. .

Last layer.. .

Figure 1: The framework of our proposed automatic learning
rate controller.

Many machine learning tasks need to train a model with
parameters ω by minimizing a loss function f defined over a
set X of training examples:

ω∗ = arg min
ω

fω(X). (1)



A standard approach for the loss function minimization is gra-
dient descent, which sequentially updates the parameters us-
ing gradients step by step:

ωt+1 = ωt − at∇f t, (2)
where at is the learning rate at step t, and∇f t is the local gra-
dient of f at ωt. Here one step can be the whole batch of all
the training data, a mini batch of tens/hundreds of examples,
or a random sample.

It is observed that the performance of SGD based methods
is quite sensitive to the choice of at for non-convex loss func-
tion f . Unfortunately, f is usually non-convex with respect
to the parameters w in many ML algorithms, especially for
deep neural networks. We aim to learn a learning rate con-
troller using RL techniques that can automatically control at.

Figure 1 illustrates our automatic learning rate controller,
which adopts the actor-critic framework in RL. The basic idea
is that at each step, given the current model ωt and training
sample x, an actor network is used to take an action (the learn-
ing rate at, and it will be used to update the model ωt), and
a critic network is used to estimate the goodness of the ac-
tion. The actor network will be updated using the estimated
goodness of at, and the critic network will be updated by min-
imizing temporal difference (TD) [Sutton and Barto, 1990]
error.

We describe the details of our algorithm in the following
subsections.

3.1 Actor Network
The actor network, which is called policy network in RL,
plays the key role in our algorithm: it determines the learning
rate control policy for the primary ML algorithm1 based on
the current model, training data, and maybe historical infor-
mation during the training process.

Note that ωt could be of huge dimensions, e.g., one widely
used image recognition model VGGNet [Simonyan and Zis-
serman, 2014] has more than 140 million parameters. If the
actor network takes all of those parameters as the inputs, its
computational complexity would dominate the complexity of
the primary algorithm, which is unfordable. Therefore, we
propose to use a function χ(·) to process and yield a compact
vector st as the input of the actor network. Following the
practice in RL, we call χ(·) the state function, which takes ωt
and the training data x as inputs:

st = χ(ωt, X). (3)
Then the actor network πθ(·) parameterized by θ yields an
action at:

πθ(s
t) = at, (4)

where the action at ∈ R is a continuous value. When at is
determined, we update the model of the primary algorithm by
Equation 2.

Note that the actor network has its own parameters and we
need to learn them to output a good action. To learn the actor
network, we need to know how to evaluate the goodness of
an actor network. The critic network exactly plays this role.

1Here we have two learning algorithms. We call the one with
learning rate to adjust as the primary ML algorithm, and the other
one which optimizes the learning rate of the primary one as the sec-
ondary ML algorithm.

Algorithm 1 Actor-Critic Algorithm for Learning Rate
Learning

Inputs: Training steps T ; training set X; loss function f ;
state function χ; discount factor: γ ; mini-batch size mθ

of actor network; mini-batch size mϕ of critic network;
reset frequency of the model e

1: Initialize model parameters ω as ω0, policy parameters θ
of the actor network as θ0, and value parameters ϕ of the
critic network as ϕ0.

2: for t = 1, ..., T do
3: Sample xi ∈ X, i ∈ 1, ..., N.
4: Extract state vector: sti = χ(ωt, xi).
5: //Actor network selects an action.
6: Computes learning rate ati = πθ(s

t
i).

7: //Update model parameters ω.
8: Compute∇f t(xi).
9: Update ω: ωt+1 = ωt − ati∇f t(xi).

10: //Update critic network by minimizing square error
between estimation and label.

11: rt = f t(xi)− f t+1(xi)
12: Extract state vector: st+1

i = χ(ωt+1, xi)

13: Compute Qϕ(st+1
i , πθ(s

t+1
i )), Qϕ(sti, a

t
i)

14: Compute δt according to Equation 7:
δt = rt + γQϕ(st+1

i , πθ(s
t+1
i ))−Qϕ(sti, a

t
i)

15: Compute the gradients of critic network according to
Equation 8 :
∇ϕt = δt∇ϕQϕ(sti, a

t
i)

16: if t mod mϕ = 0 then
17: Update ϕ by ∇ϕ = 1

mϕ

∑mϕ−1
u=0 ∇ϕt−u

18: end if
19: // Update actor network
20: Sample xj ∈ X, j ∈ 1, ..., N, j 6= i.
21: Extract state vector: st+1

j = χ(ωt+1, xj).
22: Compute at+1

j = πθ(s
t+1
j ).

23: Compute the gradients of actor network according to
Equation 9:

∇θt = ∇θπθ(st+1
j )∇aQϕ(st+1

j , at+1
j )|a=πθ(s)

24: if t mod mθ = 0 then
25: Update θ by∇θ = 1

mθ

∑mθ−1
u=0 ∇θt−u

26: end if
27: if t mod e = 0 then set ωt+1 = ω0 end if
28: end for
29: return ω, θ, ϕ;

3.2 Critic Network

Recall that our goal is to find a good policy for learning rate
control to ensure that a good model can be learnt eventually
by the primary ML algorithm. For this purpose, the actor
network needs to output a good action at at state st so that
finally a low training loss f(·) can be achieved. In RL, the
Q function Qπ(s, a) is often used to denote the long term
reward of the state-action pair s, a while following the policy
π to take future actions. In our problem, Qπ(st, at) indicates
the accumulative decrement of training loss starting from step
t. We define the immediate reward at step t as the one step



0

0.02

0.04

0.06

0.08

0.1

0 2000 4000 6000 8000 10000 12000

SGD
ADAM
Adagrad
RMSprop
Daniel et al.
vSGD
Our method

(a)

0.025

0.035

0.045

0.055

0.065

0.075

0 2000 4000 6000 8000 10000 12000

SGD
ADAM
Adagrad
RMSprop
Daniel et al.
vSGD
Our method

(b)
Figure 2: Results on MNIST. (a) Training loss. (b) Test loss. The x-axis represents the number of mini batches. The y-axis
represents loss value.

loss decrement:
rt = f t − f t+1. (5)

The accumulative value Rtπ of policy π at step t is the total
discounted reward from step t:

Rtπ = ΣTk=tγ
k−tr(sk, ak),

where γ ∈ (0, 1] is the discount factor.
Considering that both the states and actions are uncount-

able in our problem, the critic network uses a parametric func-
tion Qϕ(s, a) with parameters ϕ to approximate the Q value
function Qπ(s, a).

3.3 Training of Actor and Critic Networks
The critic network has its own parameters ϕ, which is up-
dated at each step using TD learning. More precisely, the
critic is trained by minimizing the square error between the
estimation Qϕ(st, at) and the target yt:

yt = rt + γQϕ(st+1, at+1). (6)

The TD error is defined as:

δt = yt −Qϕ(st, at)
= rt + γQϕ(st+1, πθ(s

t+1))−Qϕ(st, at)
(7)

The weight update rule follows the on-policy deterministic
actor-critic algorithm. The gradients of critic network are:

∇ϕ = δt∇ϕQϕ(st, at), (8)

The policy parameters θ of the actor network is updated by
ensuring that it can output the action with the largest Q value
at state st, i.e., a∗ = arg maxaQϕ(st, a). Mathematically,

∇θ = ∇θπθ(st+1)∇aQϕ(st+1, at+1)|a=πθ(s). (9)

3.4 The Algorithm
The overall algorithm for learning rate learning is shown in
Algorithm 1. In each step, we sample an example (Line 3),
extract the current state vector (Line 4), compute the learning
rate using the actor network (Line 6), update the model (Lines
8-9), compute TD error (Lines 11-15), update the critic net-
work (Line 16-18), and sample another example (Line 20)
to update the actor network (Line 21-26). We would like to
make some discussions about the algorithm.

First, in the current algorithm, for simplicity, we consider
using only one example for model update. It is easy to gener-
alize to a mini batch of random examples.

Second, one may notice that we use one example (e.g., xi)
for model and the critic network update, but a different exam-
ple (e.g., xj) for the actor network update.

Doing so we can reduce oscillation during training. Sup-
pose that the gradient direction of current example (or mini
batch of examples) is quite different from others in this stage
of training process. Intuitively at this step the model will be
changed a lot to fit the example, consequently resulting in
oscillation of the training, as shown in our experiments. As
aforementioned, one principle for ideal learning rate control
is to decrease it when the gradient vector oscillates, and in-
crease it when the gradient vector follows a relatively steady
direction. Therefore, we try to alleviate the problem by con-
trolling learning rate according to gradient disagreement.

By feeding different examples to the actor and critic net-
works, it is very likely the critic network will find that the
gradient direction of the example fed into the actor network is
inconsistent with its own training example and thus criticize
the large learning rate suggested by the actor network. More
precisely, the update of ω is based on xi and the learning rate
suggested by the actor network, while the training target of
the actor network is to maximize the output of the critic net-
work on xj . If there is big gradient disagreement between xi
and xj , the update of ω, which is affected by actor’s decision,
would cause the critic’s output on xj to be small. To compen-
sate this effect, the actor network is forced to predict a small
learning rate for big gradient disagreement in this situation.

4 Experiments
We conducted a set of experiments to test the performance
of our learning rate learning algorithm and compared with
several baseline methods. We report the experimental results
in this section.

4.1 Experimental Setup
We specified our actor-critic algorithm in experiments as fol-
lows. Given that stochastic mini-batch training is a common
practice in deep learning, the actor-critic algorithm also oper-
ated on mini-batches, i.e., each step is a mini batch in our



0.2

0.4

0.6

0.8

1

1.2

1.4

0 20000 40000 60000 80000 100000

SGD
ADAM
Adagrad
RMSprop
Daniel et al.
vSGD
Our method

(a)

0.6

0.7

0.8

0.9

1

1.1

1.2

0 20000 40000 60000 80000 100000

SGD
ADAM
Adagrad
RMSprop
Daniel et al.
vSGD
Our method

(b)
Figure 3: Results on CIFAR10. (a) Training loss. (b) Test loss. The x-axis is the number of mini batches. The y-axis represents
loss value.

experiments. The state st = χ(ωt, Xi) is defined as the
average loss of learning model ωt on the input mini batch
Xi.The actor network is specified as a two-layer long short-
term memory (LSTM) network with 20 units in each layer,
considering that a good learning rate for step t depends on
and correlates with the learning rates at previous steps while
LSTM is well suited to model sequences with long-distance
dependence. The critic network is specified as a simple neu-
ral network with one hidden layer and 10 hidden units. Adam
with the default setting in toolbox is used to train the learning
rate learner in all the experiments.

We compared our method with several mainstream SGD
algorithms, including SGD, Adam [Kingma and Ba, 2014],
Adagrad [Duchi et al., 2011] and RMSprop [Tieleman and
Hinton, 2012]. We also compare our method with a recent
work by [Daniel et al., 2016]2. This work identifies sev-
eral hand-designed features and use an RL method (Rela-
tive Entropy Policy Search) to learn a learning rate controller.
Another baseline method is “vSGD” [Schaul et al., 2013]2,
which automatically adjusts learning rates to minimize the
expected error. It tries to compute learning rate at each update
by optimizing the expected loss after the next update accord-
ing to (1) the square norm of the expectation of the gradient
and (2) the expectation of the square norm of the gradient.

4.2 Experimental Results
To verify the effectiveness of our method on different datasets
and model structures, experiments are conducted on two
widely used image classification datasets: MNIST [LeCun
et al., 1998] and CIFAR-10 [Krizhevsky and Hinton, 2009].
For simplicity, the primary ML algorithm adopted the CNN
models and settings from tensorflow [Abadi et al., 2015] tu-
torial, whose source code can be found at [TensorflowExam-
ples, ] For each of these algorithms and each dataset, we tried
the following learning rates 10−4, 10−3, ..., 100. We report
the best performance of these algorithms over those learning
rates. If an algorithm needs some other parameters to set,
such as decay coefficients for Adam, we used the default set-
ting in the toolbox. For each benchmark and our proposed
method, five independent runs are averaged and reported in
all of the following experiments. We trained all the baseline
models until convergence.

2Thank the authors for providing the source code.

Results on MNIST
MNIST is a dataset for handwritten digit classification task.
Each example in the dataset is a 28 × 28 black and white
image containing a digit in {0, 1, · · · , 9}. The CNN model
used in the primary ML algorithm is consist of two convolu-
tional layers, each followed by a pooling layer, and finally a
fully connected layer. There are 60,000 training images and
10,000 test images in this dataset. We scaled the pixel values
to the [0,1] range before inputting to all the algorithms. Each
mini batch contains 50 randomly sampled images.

Figure 2 shows the results of our actor-critic algorithm and
the baseline methods, including the curves of training loss
and test loss. We have the following observations.

• Although the loss of our algorithm does not decrease
very fast at the beginning, our algorithm achieves the
best performance at the end. One may expect that our
algorithm should have significantly faster convergence
speed from the beginning considering that our algorithm
learns both the learning rate and the CNN model, while
most of the baseline methods only learn the CNN model
and choose the learning rate per some predefine rules.
However, this is not the case. Since our method targets at
future long-term rewards rather than immediate rewards,
it can make far-sighted decision and lead to better per-
formance in long term.

• The loss curves of our approach is more smooth and sta-
ble than others. That is because we carefully design the
algorithm and feed different samples to the actor net-
work and critic network. As discussed in Section3.4,
doing so we can reduce oscillation during training.

Results on CIFAR-10
CIFAR-10 is a dataset consisting of 60000 natural 32 × 32
RGB images in 10 classes: 50,000 images for training and
10,000 for test. We used a CNN with 2 convolutional layers
(each followed by max-pooling layer) and 2 fully connected
layers for this task.Before inputting an image to the CNN, we
subtracted the per-pixel mean computed over the training set
from each image.

Figure 3 shows the results of all the algorithms on CIFAR-
10, including the curves of training loss and test loss. While
the convergence speed of our method is similar to that of the



0.05 0.00 0.05 0.10 0.15 0.20
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Our Method
SGD
ADAM
Adagrad
Adadelta
RMSprop

(a)
0.05 0.00 0.05 0.10 0.15 0.20 0.25

0.30

0.25

0.20

0.15

0.10

0.05

0.00

0.05
Our Method
SGD
ADAM
Adagrad
Adadelta
RMSprop

(b)
0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4
Our Method
SGD
ADAM
Adagrad
Adadelta
RMSprop

(c)
Figure 4: Trajectories produced by different algorithms on three random two-dimensional regression problems. The axes
represent the values of the two dimensions. The contours outline the area with the same target value, and the target value is
gradually decreasing from orange area to blue area. Each arrow represents one iteration of an algorithm, whose tail and tip
correspond to the preceding and subsequent iterations respectively.

0 5 10 15 20 25 30

Training Step

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Lo
ss

Test Loss of Our Method

Test Loss of SGD

Train Loss of Our Method

Train Loss of SGD

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
ra

d
ie

n
t 

D
is

a
g
re

e
m

e
n
t

Gradient Disagreement of Our Method

Gradient Disagreement of SGD

Figure 5: Gradient disagreement, training loss and test loss of
SGD and our method on a two-dimensional regression prob-
lem.

baselines, the final performance of our method is the best
among all the compared algorithms.

4.3 Further Analysis
In order to verify our intuitive explanation that by consider-
ing gradient disagreement, our method can make the learning
process of the primary ML algorithm stable, here we con-
ducted another experiment. In this experiment, we investi-
gate the relationship between gradient disagreement and loss
in the training process of a simple two-dimensional regres-
sion problem. We quantify gradient disagreement by using
Euclidean distance between gradient on current batch of data
and the overall gradient.

Figure 5 shows the gradient disagreement, training loss and
test loss of SGD and our method. We can observe the correla-
tion among them from the figure. As discussed in Section 3.4,
by feeding different samples to actor and critic networks, our

method would encourage the learning rate to be small when
gradient disagreement is large, so that the oscillation of the
training process would be relieved.

It is easy to see from the figure that test loss of our method
is stable when there is big gradient disagreement, while the
loss of SGD oscillates along with gradient disagreement,
leading to slow speed of convergence. The test loss of SGD
may increase when gradient disagreement increases, while
in overall, our test loss decline in monotonous in the figure.
Therefore, we need to feed different training data to the actor
network and the critic network to ensure the performance of
the algorithm.

To get deeper insight, we visualized the optimization pro-
cess of our method. From Figure 4, we can find that our
method get to convergence with fewer steps and the optimiza-
tion trajectory is relatively smooth compared to other meth-
ods.

5 Conclusions and Future Work
In this work, we have studied how to control learning rates
for gradient based machine learning methods and proposed an
actor-critic algorithm, to help the main network achieve better
performance. The experiments on two image classification
tasks have shown that our method (1) can successfully adjust
learning rate for different datasets and CNN model structures,
leading to better convergence, and 2) can reduce oscillation
during training.

For the future work, we will explore the following direc-
tions. In this work, we have applied our algorithm to con-
trol the learning rates of SGD. We will apply to other vari-
ants of SGD methods. We have focused on learning a learn-
ing rate for all the model parameters. We will study how
to learn an individual learning rate for each parameter. We
have considered learning learning rates using RL techniques.
We will consider learning other hyperparameters such as step-



dependent dropout rates for deep neural networks.

References
[Abadi et al., 2015] Martın Abadi, Ashish Agarwal, Paul

Barham, et al. Tensorflow: Large-scale machine learning
on heterogeneous systems, 2015. Software available from
tensorflow. org, 1, 2015.

[Bahdanau et al., 2016] Dzmitry Bahdanau, Philemon
Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle
Pineau, Aaron Courville, and Yoshua Bengio. An actor-
critic algorithm for sequence prediction. arXiv preprint
arXiv:1607.07086, 2016.

[Barto et al., 1983] Andrew G Barto, Richard S Sutton, and
Charles W Anderson. Neuronlike adaptive elements that
can solve difficult learning control problems. IEEE trans-
actions on systems, man, and cybernetics, (5):834–846,
1983.

[Daniel et al., 2016] Christian Daniel, Jonathan Taylor, and
Sebastian Nowozin. Learning step size controllers for ro-
bust neural network training. In Thirtieth AAAI Conference
on Artificial Intelligence, 2016.

[Darken and Moody, 1990] Christian Darken and John
Moody. Fast adaptive k-means clustering: some empir-
ical results. In Neural Networks, 1990., 1990 IJCNN
International Joint Conference on, pages 233–238. IEEE,
1990.

[Duchi et al., 2011] John Duchi, Elad Hazan, and Yoram
Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[Jacobs, 1988] Robert A Jacobs. Increased rates of conver-
gence through learning rate adaptation. Neural networks,
1(4):295–307, 1988.

[Kingma and Ba, 2014] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[Krizhevsky and Hinton, 2009] Alex Krizhevsky and Geof-
frey Hinton. Learning multiple layers of features from tiny
images. 2009.

[LeCun et al., 1998] Yann LeCun, Léon Bottou, Yoshua
Bengio, and Patrick Haffner. Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[LeCun et al., 2012] Yann A LeCun, Léon Bottou,
Genevieve B Orr, and Klaus-Robert Müller. Effi-
cient backprop. In Neural networks: Tricks of the trade,
pages 9–48. Springer, 2012.

[Maclaurin et al., 2015] Dougal Maclaurin, David Duve-
naud, and Ryan P Adams. Gradient-based hyperparameter
optimization through reversible learning. In Proceedings
of the 32nd International Conference on Machine Learn-
ing, 2015.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
et al. Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533, 2015.

[Orr and Müller, 2003] Genevieve B Orr and Klaus-Robert
Müller. Neural networks: tricks of the trade. Springer,
2003.

[Schaul et al., 2013] Tom Schaul, Sixin Zhang, and Yann
LeCun. No more pesky learning rates. ICML (3), 28:343–
351, 2013.

[Senior et al., 2013] Andrew Senior, Georg Heigold,
Ke Yang, et al. An empirical study of learning rates in
deep neural networks for speech recognition. In 2013
IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 6724–6728. IEEE, 2013.

[Silver et al., 2014] David Silver, Guy Lever, and Nicolas
Heess. Deterministic policy gradient algorithms. 2014.

[Silver et al., 2016] David Silver, Aja Huang, et al. Master-
ing the game of go with deep neural networks and tree
search. Nature, 529(7587):484–489, 2016.

[Simonyan and Zisserman, 2014] K. Simonyan and A. Zis-
serman. Very deep convolutional networks for large-scale
image recognition. CoRR, abs/1409.1556, 2014.

[Sutton and Barto, 1990] Richard S Sutton and Andrew G
Barto. Time-derivative models of pavlovian reinforce-
ment. pages 497–537, 1990.

[Sutton and Barto, 1998] Richard S Sutton and Andrew G
Barto. Reinforcement learning: An introduction, vol-
ume 1. MIT press Cambridge, 1998.

[Sutton et al., 1999] Richard S Sutton, David A McAllester,
Satinder P Singh, Yishay Mansour, et al. Policy gradient
methods for reinforcement learning with function approx-
imation. In NIPS, volume 99, pages 1057–1063, 1999.

[Sutton, 1984] Richard Stuart Sutton. Temporal credit as-
signment in reinforcement learning. 1984.

[Sutton, 1988] Richard S Sutton. Learning to predict by
the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[Sutton, 1992] Richard S Sutton. Adapting bias by gradi-
ent descent: An incremental version of delta-bar-delta. In
AAAI, pages 171–176, 1992.

[TensorflowExamples, ] TensorflowExamples. Tensorflow
examples. https://github.com/tensorflow/models/tree/master/tutorials/image.

[Tieleman and Hinton, 2012] Tijmen Tieleman and Geoffrey
Hinton. Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 4(2), 2012.

[Watkins and Dayan, 1992] Christopher JCH Watkins and
Peter Dayan. Q-learning. Machine learning, 8(3-4):279–
292, 1992.

[Xu et al., 2015] Kelvin Xu, Jimmy Ba, et al. Show, attend
and tell: Neural image caption generation with visual at-
tention. arXiv preprint arXiv:1502.03044, 2(3):5, 2015.

[Zeiler, 2012] Matthew D Zeiler. Adadelta: an adaptive
learning rate method. arXiv preprint arXiv:1212.5701,
2012.


	1 Introduction
	2 Related Work
	2.1 Improved Gradient Methods
	2.2 Reinforcement Learning

	3 Method
	3.1 Actor Network
	3.2 Critic Network
	3.3 Training of Actor and Critic Networks
	3.4 The Algorithm

	4 Experiments
	4.1 Experimental Setup
	4.2 Experimental Results
	4.3 Further Analysis

	5 Conclusions and Future Work

