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Modeling Natural Sentences

e Structure Information is Essential

* Natural languages exhibit strong local structures in terms of semantics such as
phrases.
E.g. We must find the missing document at all costs.

e Phrase structures are important for understanding the meaning of sentences

e Conventional Recurrent Neural Networks
e Usually treat each token in a sentence uniformly and equally
e May miss the rich semantic structure information of a sentence.
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Challenges in Capturing Semantic Structure Information

e Requiring Flexibility
* There are diverse word dependence patterns

* Flexible and learnable structure modeling method is preferred than predefined
connections or fixed topology.

e Hard to Parameterize

* The local structures and word dependence patterns in sentences are discrete
symbols rather than regular learnable model parameters.

* |tis non-trivial to capture and parameterize them.
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Multi-Channel Recurrent Neural Networks (MC-RNN)
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e |Local connections are built in each block

* Each channel in the MC-RNN layer contains several blocks
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 Solid lines with the same color (red/blue/black) share the same parameter matrices

* Channels can be computed in parallel.
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Capturing Rich Patterns with Multiple Channels

my denotes the number of predecessors
connected to node (¢, k).

Define the temporal input at step tin
channel k as

Then apply the recurrent computation f

to get the output:

_ k

= f(St—1,X¢)
Learnable parameters including RNN
internal parameters and weights in blocks

are shared among different channels.
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* The inputs of each recurrent unit include
* not only its immediate predecessor

e but also from the historical units within a certain distance.
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* MC-RNN can capture a strong dependence between words in a phrase, and make compact

representations for the phrased

* Different Connection Mechanism for Different Channels
* Set the blocks of neighboring channels has one step staggered with each other in a progressive way

* All possible local structures or dependency patterns whose length is no more than the block size can be enumerated
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At time step t, the red lines in channel 1, 2, 3 represent 4-word/ 3-word/ 2-word dependence patterns respectively
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Aggregating Patterns by an Attention Module

* Combining Channels by Dynamically Adjusting Weights
* MC-RNN is designed to have different topological connections representing different
dependence patterns.

* We use the attention mechanism to obtain the weighted average of each channel’s hidden as
the input to next layer, which is denoted as

hgtt = YRo1 afhf
* The attention weight is calculated by
ok = exp(ef) Q Q Q Q Q Q
t — Z?:l exp(eti) ? % ? Attention Module ? ? ?
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Experimental Results

Actor-critic -

NPMT-LM -
 Machine Translation HM-RNN 25M
e 2-layer encoder, 2-layer decoder HO-RNN 30M
e 256-d bpe embedding, 256-d hidden size Baseline-RNN 25M
* Beam search with width 5 MC-RNN-2 28M
e Test on IWLST 2014 De-En task MC-RNN-3 29M
MC-RNN-4 31M

Compared with

Baseline-RNN: the most widely used sequence to sequence framework RNNSearch (Bahdanau, Cho, and

Bengio 2015)
HO-RNN: changed the topological structure of RNN (Soltani and Jiang 2016)
HM-RNN: modifies the recurrent computations (Chung, Ahn, and Bengio 2017)

B® Microsoft  (KiMS

Methods BLEU

28.53
29.16
30.60
31.29
31.03
31.98
32.23
32.09

Actor-critic: an approach to training neural networks to generate sequences using reinforcement learning

(Bahdanau et al. 2017)

NPMT-LM: a neural phrasebased machine translation system that models phrase structures in the target

language (Huang et al. 2018)
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Experimental Results

e Abstractive Summarization

* The task is to generate the headline of the given article
* The dataset we use is Gigaword corpus (Graff et al. 2003):

e 3.8M training article-headline pairs, 190k for validation and 2000 for test
 MC-RNN follows the settings of Baseline-RNN:

e Using LSTM as the recurrent unit

e encoder and the decoder have 4 layers

* Embedding size: 256

e Hidden size: 256

HM-RNN 34.68 16.11 32.22
HO-RNN 46M 35.86 16.99 33.38
Baseline-RNN 36M 34.65 16.13 32.24
MC-RNN-2 38M 36.21 17.30 33.60
MC-RNN-3 40M 36.55 17.58 33.72

MC-RNN-4 42M 36.50 17.44 33.68
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Experimental Results

e Language Modeling
* Evaluate on Penn Treebank corpus which contains about 1 million words
e Evaluation metric: perplexity

e The network structure follow the state-of-the-art model AWD-LSTM (Merity, Keskar,
and Socher 2018)

e 1150 units in the hidden layer
e 400-d word embedding

* DropConnect is used on the hidden-to-hidden weight matrices

Methods Validation

Variational LSTM + augmented loss (Inan, Khosravi, and Socher 2017) 71.1 68.5
Variational RHN (Zilly et al. 2016) 67.9 65.4
NAS Cell (Zoph and Le 2017) - 62.4
Skip Connection LSTM(Melis, Dyer, and Blunsom 2018) 60.9 58.3
AWD-LSTM w/o finetune (baseline) (Merity, Keskar, and Socher 2018) 60.7 58.8

MC-RNN 59.2 56.9
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Case Studies and Visualization
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Visualization of attention scores of the sentence “ Home-grown champions have been few and far between at the Italian Open.”

* Local dependence patterns and local structures are captured, such as:
* "home-grown champions”
e “champions have been”
e “few and far between”
”Italian Open”




B Microsoft
Performance on Long Sentences

e Conducted on IWSLT-14 De-En translation task

* Long sentences are more difficult to handle than 40 o Baseline-RNN
short ones 355 | B MC-RNN

e Both our method and the baseline-RNN model perform
worse as the lengths of the sentences increase, indicating 30 r

BLEU

* Our model brings much more improvement on long 25 ¢

sentences

* when the sentence length is greater than 61, our
model outperforms baselines by a larger margin 15 ¢

20

10
c Q Q Q Q Q Q Q Q Q Q Q
* MC-RNN enables short-cut connections across S N i A
timestep and directly passes error signal through
blocks

Sentence length
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Impact of Model Size and Time Cost

We tried several runs for Baseline-RNN

. ggséellne-RNN-large: increase the size of the hidden state from 256 to

» Baseline-RNN-deep: Increase the number of layers from 2 to 3 Fase e e
o , , Baseline-RNN-large 29M 30.93

No significant improvement of performance on Baseline- _
Baseline-RNN-deep 29M 30.98

RNN

_ MC-RNN-2 28M 31.98
(Ejet’Fer per;:ormsncel: of our MdC_FNN is caused by model AyT— — B
esign rather than larger model size MC-RNN.4 1M 2209

Owing to parallel computation, MC-RNN can achieve almost
the same time cost as the conventional RNN
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Conclusions

* We proposed a new RNN model with multichannel multi-block structure to better
capture and utilize local patterns in sequential data for language-related tasks

e Experiments on machine translation, abstractive summarization, and language
modeling validated the effectiveness of the proposed model

* Achieved new state-of-the-art results on Gigaword on text summarization and Penn Treebank
on language modeling
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