
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 1

Digger-Guider: High-Frequency Factor Extraction
for Stock Trend Prediction
Yang Liu, Chang Xu, Min Hou, Weiqing Liu, Jiang Bian,
Qi Liu, Member, IEEE and Tie-Yan Liu, Fellow, IEEE

Abstract—Recent years have witnessed increasing attention being paid to AI-based quantitative investment. Compared to traditional
low-frequency data (e.g., daily, weekly), high-frequency data (e.g., minute-level) is often underutilized for low-frequency stock trend
prediction, leaving the vast potential for improvement. However, valuable and noisy information coexist in high-frequency data. The
learning process of high-frequency factor extractors can easily be overwhelmed by noise, leading to overfitting. Moreover, common
techniques used to prevent overfitting often result in poor performance on this task since they usually roughly restrict the model’s capacity,
making it challenging to model complex trading signals in high-frequency data. When designing high-frequency factor extractors, we face
a tough dilemma. A high-capacity model may easily overfit to noise, while a simple but robust model may not capture complex
high-frequency patterns. To address these problems, we propose maintaining model capacity while preventing overfitting by constructing
two components that balance information and noise through interactions between them. Specifically, we propose a novel learning
framework called Digger-Guider to extract informative stock representations from noisy high-frequency data. We develop a high-capacity
model called Digger to extract local and detailed features from the high-frequency data, and we design a robust model called Guider to
capture global tendency features and help the Digger overcome the noise. The Digger and Guider enhance each other through mutual
distillation during training, serving as data-driven regularizations that work well on this task. Extensive experiments on real-world datasets
demonstrate that our framework can produce powerful high-frequency stock factors that significantly improve stock trend prediction
performance and our understanding of the finance market.

Index Terms—Stock Factor Extraction, Knowledge Distillation, Financial Investment, Deep Learning, Artificial Intelligence

✦

1 INTRODUCTION

A S one of the most well-known and complicated financial
assets, stocks have always been considered key invest-

ment vehicle for growing wealth. Numerous speculative
investors attempt to forecast future stock movements and
make profits through spread (price differences). An accurate
prediction of stock trends and a comprehensive understand-
ing of the market are key to high and stable yields.

Relying on statistical theory and computer technology,
investors attempt to extract effective information relevant
to the future price. According to Behavioral Finance [1], [2],
one of the main elements that influence stock prices is the
biases of investor behavior, which is usually reflected in
the widely used historical price-volume sequences. In the
past, due to the limitation of the computational resources
that previous work can hardly afford to train high capacity
models, most of them [3], [4], [5], [6] mainly leverage
low-frequency price-volume information. Nowadays, with
the increased digitization of finance, the ability to collect
high-frequency data together with affordable computational
resources makes it possible to leverage high-frequency data.
In practice, we observe that high-frequency data contain
instructive investment signals overlooked by low-frequency
data. For instance, after analyzing massive high-frequency

• Yang Liu, Chang Xu, Weiqing Liu, Jiang Bian and Tie-Yan Liu are with
Microsoft Research Asia, Beijing, 100080, China. E-mail: {yangliu2, chanx,
weiqing.liu,jiang.bian,Tie-Yan.Liu}@microsoft.com

• Min Hou and Qi Liu are with the Anhui Province Key Laboratory of
Big Data Analysis and Application (BDAA), School of Data Science,
University of Science and Technology of China, Hefei, Anhui 230027,
China. E-mail: minho@mail.ustc.edu.cn, qiliuql@ustc.edu.cn.

Manuscript received Aug 21, 2021.(Corresponding author: Chang Xu.)

Date

Open

Close
High

Low

High

Close

Open

Low

Price Volume

Volume

Price

(a) Daily-Frequency stand time bars

Price

Date

Volume

Volume

Price

(b) Minute-Frequency stock chart

Fig. 1. The same 3-day stock price-volume series represented in different
frequencies. Dramatic pulling up of price appears before the close on
Dec. 10.

data, we find that the stock price is likely to go up the next
day if there is an obvious pulling up before the close. Figure 1
shows a specific example. This phenomenon may result from
those investors who know some bull news (news that may
lead to a price increase) in advance. To reduce the influence
of price fluctuation, they choose to buy shares right before
closing with the help of automated trading systems, leading
to a dramatic pulling up before the close. Such subtle patterns
cannot be discovered in low-frequency data. Therefore, high-
frequency data brings opportunities to improve stock trend
prediction further.

This paper focuses on extracting high-frequency (e.g.,
minutely) stock factors for relatively low-frequency (e.g.,
daily) stock trend prediction, which has rarely been studied

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 2

before. Most previous work is based on daily-frequency
data for daily trend prediction. Daily-frequency data are
widely used in many traditional stock analysis methods,
such as Fourier Analysis [7], and Technical Analysis [8],
[9], [10]. These works create technical indicators from charts
and fixed mathematical formulas and then fit the stochastic
stock trend. However, such hand-crafted indicators are
usually criticized for their poor generalization of dynamic
markets. Other recent works [3], [4], [5], [6] only focus on
modeling correlations between trading days, but overlook
subtle patterns hidden in intraday data and cannot be applied
to high-frequency data directly. Although there exist a few
studies that take high-frequency data as input [11], [12], [13],
they require input data and output prediction to be of the
same frequency in their models, which cannot be used for
low-frequency prediction directly.

With shorter sampling intervals, the influence of a small
number of trading individuals’ random behavior would
be amplified in high-frequency data [14]. Therefore, high-
frequency data typically produces a lot of price fluctuations
that distort the overall trend, which is meaningless noisy
information for future trend prediction. In fact, directly
using high-frequency data for stock trend prediction leads
to worse performance than using the daily frequency model
(see Section 5.2.1). Specifically, since high-frequency data
carry more noisy signals than low-frequency data, directly
training the factor extraction model would over-fit to noise,
resulting in the model’s poor generalization [3]. However,
since common tricks for preventing over-fitting usually work
on restricting the model capacity, complex trading signals in
high-frequency data cannot be well modeled, leading to poor
performance (see Section 5.2.3). To design an effective stock
factor extractor over high-frequency data, the main challenge
is to model complex high-frequency signals while avoiding
being overwhelmed by noise. That is, when designing high-
frequency factor extractors, we face a tough dilemma – a
complex and high-capacity model would easily over-fit to
noise, while a simple but robust model could not capture
diverse high-frequency patterns.

To address the above challenges, we propose a learning
framework called Digger-Guider to extract decent factors from
informative but noisy high-frequency data. We construct two
major components with different functions and different
granularities of information utilization, conducting interac-
tions between them. The first part, Digger, is designed as a
high-capacity model to dig valid market signals. It processes
high-frequency data in a fine-grained way to extract local and
detailed price trend patterns. However, since valid patterns
and noise coexist in high-frequency data, the training process
of Digger would easily over-fit the noise. This is why we
design the second part, Guider, as a simple but robust model
working in a coarse-grained way. In contrast to Digger,
Guider focuses more on leveraging coarse-grained informa-
tion to extract global and robust features, which contain less
noise and less detailed information. For interaction, mutual
distillation is proposed to conduct knowledge sharing and
data-driven regularization between the two components.
Specifically, Guider distillates knowledge and transfers it to
Digger as a regularization term, and guides the training
process of Digger to overcome over-fitting; then Guider
learns from Digger to make itself knowledgeable. The above

process is carried out iteratively. As a result, the model can
extract complex high-frequency factors while avoiding being
overwhelmed by noise.

We analyze our method in a mathematical view and
dissect its effects into three aspects: i) Knowledge sharing
within the iterative learning between Digger and Guider
can enhance each other. ii) The distillation term in the loss
function acts as a data-driven regularization to prevent over-
fitting. iii) The updated prior knowledge at each iteration
allows the two components of Digger-Guider to be improved
progressively. The algorithm analysis reveals how our model
keeps capacity while preventing over-fitting, and extensive
experiments on stock markets demonstrate the effectiveness
of our framework. We verify that our framework can
mine valid underlying patterns from high-frequency data
and survive from submerging into the noise. Our method
significantly improves performance, which further leads to a
profitable trading strategy.

Our main contributions are as follows: 1) We propose
a novel Digger-Guider framework to extract informative
stock factors from noisy high-frequency data. Our work
is one of the first few studies of feature extraction from
high-frequency price-volume data. 2) We mathematically
analyze the learning mechanism behind the mutual distil-
lation process of Digger-Guider, revealing the intuition to
prevent over-fitting while keeping model expressiveness. 3)
We conduct extensive experiments on real-world datasets.
Our approach significantly outperforms baselines on both
price trend prediction and trading simulation.

2 RELATED WORK

2.1 Stock Factor Extraction
Previous works on stock factor extraction can be roughly
divided into two classes: traditional hand-crafted technical
indicator extraction and deep learning-based factor extrac-
tion. Traditional technical indicator approaches [8], [9], [10]
consist of hand-crafted features based on historical price-
volume data, etc. They heavily rely on domain knowledge
and cannot be generalized to capture dynamic market trends.

Recent research proposes exploiting deep neural net-
works to learn stock factors and predict stock trends [15],
[16], [17], [18], [19], [20]. Despite increasing efforts in this
area, previous work mainly leverages low-frequency (say
daily) information while few of them pay enough attention
to high-frequency stock data. Most previous works [3], [5],
[6], [7], [21], [22] are based on daily-frequency bars. They
focus on modeling correlations between trading days but
overlook subtle patterns hidden in intraday data. These
methods cannot be adapted to high-frequency data directly
since there are no specific designs for digging into detailed
local information. Although there exist a few works taking
high-frequency data as input [11], [12], [13], they do not
match our application scenario. Specifically, they require
input data and output prediction to be of the same frequency
in their models, being unable to predict daily-level stock
trends using high-frequency data. Besides, in recent years,
there have been some representative time series forecasting
works such as Informer [23] and ETSformer [24]. However,
they were not designed for stock factor mining tasks and
also require the input data and output prediction to be of the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 3

Prediction Model 𝒈

Forward Factors to

Prediction Model 𝒈

Input Data Flow 𝒙

. . .

High-Freq Data of the Day

Fine-grained

Feature 𝒆𝒅

Coarse-grained

Feature 𝒆𝒈

Day

Min

Digger Guider

Distillation ①

Noisy Robust

Distillation ②
Fine Coarse

Feb. 2 Feb. 3 Feb. 4 Feb. 5

15:009:30 9:31 9:32

. . .

14:59

Digger

… … … … … …

. . .

. . .

. . .

Fine- grained Guider

……
Coarse-grained

High-Freq

Data 𝒙

Fig. 2. Overview of Digger-Guider framework, which consists of two components: a high-capacity model, Digger, and a robust model, Guider. Digger
works in a fine-grained way on information-digging of high-frequency data by extracting local and detailed features. Guider works in a coarse-grained
way to capture global tendency features and help Digger overcome the noise. Digger and Guider enhance each other by mutual distillation during
training.

same frequency. These works also pay insufficient attention
to the noise problem in high-frequency stock data.

2.2 Knowledge Distillation

Knowledge distillation (KD) is a common method of knowl-
edge transfer. It starts with training a powerful “teacher”
model (or ensemble of models) followed by encouraging the
“student” model to mimic the teacher’s behavior. Initially,
the common application of knowledge distillation is model
compression [25]. Then KD is re-popularised by Hinton
et al. [26]. They propose feeding the output probabilities
of a larger network directly to a smaller one through KL
Divergence loss. Beyond model compression, KD has also
been applied to enhancing model performance [9], [27].
Inspired by these methods, we propose Digger-Guider
framework that conducts mutual distillation to improve
both sides. Compared with the one-way transfer in most
KD approaches that transfers knowledge from the powerful
model to the weak model to improve the weak one, Digger-
Guider transfers knowledge bilaterally by mutual distillation
to enhance both models.

3 HIGH-FREQUENCY FACTOR EXTRACTOR

In this paper, we take daily frequency as low frequency
and minute (15-minute) frequency as high frequency, to
illustrate our method. Note that our framework can be
applied to any frequency data, even higher-frequency data.
Before introducing the learning approach, we first provide
a detailed problem description. A series of low-frequency
data of one stock over T days is traditionally defined
as x := {x1, x2, . . . , xT }, where xt is usually specified
by few pre-defined daily indicators, including the highest

price, opening price, lowest price, closing price, volume-
weighted average price and trading volume. Regarding high-
frequency data, each day can be split into N time slots, i.e.,
xt := {xt

1, x
t
2, . . . , x

t
N}, where xt

n consists of high-frequency
indicators analogous to the daily ones.

Our goal is to learn a factor extractor f(·; θ) that extracts
predictive stock trend signals, i.e., the price-volume embedding
(stock factor) et of day t for a single stock, denoted as et =
f(xt; θ), ∀t ∈ [T], where θ represents the parameters. We
define stock factor of T days as e := {e1, e2, . . . , eT } and we
have e = f(x; θ).

The factor extractor f(·; θ) is evaluated by the perfor-
mance of the extracted e = f(x; θ) on stock trend prediction
task. We train a prediction model g(·;ϕ) that maps the stock
factor to future price trend by

L(θ, ϕ) =
∑

(x,y)∈Dtrain

L(g(f(x; θ);ϕ), y), (1)

where y is the future price trend label, L is the loss function.
These notations will be used consistently throughout this
paper. To be specific, we take the rate of change of prices as
the price trend, i.e., y = pT+2/pT+1 − 1, where pt represents
the volume-weighted average price of the stock at day t. We
take the daily price trend as our label because it is consistent
with the transaction frequency of most real-world trading.
Here we take the mean squared error (MSE) as the loss
function. Dtrain is the training set and ϕ represents the
parameters of the prediction model.

We adopt the straightforward method to jointly train the
factor extractor f(·; θ) and the prediction model g(·;ϕ) by
minimizing the total loss L, to capture the underlying market
signals from high-frequency data. The detailed framework
and training strategy is elaborated as follows.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 4

3.1 Digger-Guider Framework

We propose a novel learning framework over high-frequency
data, named Digger-Guider, to extract effective factors from
informative but noisy high-frequency data. We maintain the
model capacity while preventing over-fitting by constructing
two components and balancing the valuable and noisy
information through interactions between them. Specifically,
we construct two major components with different functions
and various granularities of information utilization, and
conduct interactions between them.

The Digger fd(·; θd) is used to dig informative signals
from high-frequency data, which is a model of high capacity
and great expressiveness to capture detailed signals. It
processes high-frequency data in a fine-grained way to
extract local and detailed price trend patterns. We use a two-
layer GRU (Gate Recurrent Unit) [28] as Digger in our work.
Since valid patterns and noise coexist in high-frequency
data, the training process of Digger would easily over-fit
to the noise. To overcome the over-fitting issue, the Guider
is introduced as a simple but robust model with relatively
low capacity. We use a simple CNN (Convolutional Neural
Networks) [29] as Guider in our implementation. In contrast
to Digger, Guider processes high-frequency data in a coarse-
grained way. It places more emphasis on extracting global
and robust features, which contain less noise and less detailed
information. We present the architecture details of Digger
and Guider we leverage in Section 5.1.3. Note that since
our method is a general framework, other implementation(s)
of model architectures can also be developed. The overall
framework is shown in Figure 2.

3.2 Mutual Distillation

Mutual distillation is proposed to conduct iterative opti-
mizations between the two components. Guider distills
knowledge and transfers it to Digger as a regularization term,
and guides the training process of Digger to overcome over-
fitting; Then we let Guider learn from Digger to make itself
knowledgeable. The above process is carried out iteratively.
As a result, the model can extract complex high-frequency
factors while avoiding being overwhelmed by noise. The
effect of mutual distillation is illustrated in Figure 3.

3.2.1 Guider → Digger
We propose distilling knowledge from Guider to Digger to
overcome the influence of noise. Specifically, we take the
factor eg of robust knowledge from Guider as a fixed target
to enforce the embedding ed from Digger to be close to it.
The loss function of Digger fd(·; θd) is

Ld(θd, ϕ) =
∑

(x,y)∈Dtrain

(1− λ1)L(g(fd(x; θd);ϕ), y)

+ λ1 dist(fd(x; θd), eg),

(2)

where ed := fd(x; θd), and dist(ed, eg) is the knowledge
distillation loss. Note that dist(·, ·) can be in any form of
distance metrics. As MSE is one of the most popular metrics,
we use it in our work. λ1 is the coefficient to balance original
loss and the regularization from Guider.

In this way, Digger learns to refer robust and coarse-
grained knowledge from Guider. Moreover, the distillation

can regularize the function class of Digger to prevent over-
fitting. Note that our approach is slightly different from the
common practice of the teacher-student model. Commonly,
the teacher is a large model (such as very deep neural
networks) with higher knowledge capacity than the student
model. The target of knowledge distillation is usually for
model compression, which transfers knowledge from the
teacher model to the student model to deploy it with
limited computational resources. While in our approach,
Digger and Guider are in equal status to teach each other.
Mutual distillation in Digger-Guider works as a data-driven
regularization to prevent over-fitting and to lead to better
generalization ability.

3.2.2 Digger → Guider
For Guider, we first try to find the useful indicators of a
day and then embed them into the feature space, that is
fg = hemb ◦ hind where ◦ represents the operator of the
composition function. hind is the indicator generator and
hemb is the embedding function. The indicator generator can
be rule-based that leverages existing indicators (i.e., highest
price, opening price, lowest price, closing price, volume-
weighted average price, trading volume) And the embedding
function takes the indicators as input and yields meaningful
price-volume embeddings for stock trend prediction. The
corresponding parameters are θg = θemb ∪ θind.

When the indicator generator is rule-based and outputs
traditional indicators (aggregated statistics, such as the
highest price of the day), we call the corresponding Guider
Rule-based Guider (RG). For the Rule-based Guider, hind is
rule-based, thus the loss can be written as

LRG(θemb, ϕ)

=
∑

(x,y)∈Dtrain

L(g(hemb(hind(x); θemb);ϕ), y), (3)

which is exactly consistent with the training loss of the daily
frequency model.

More generally, the indicator generator can be a learnable
model that generates useful new indicators. We call the
corresponding Guider the Parametric Guider (PG). For the
PG, hind is parameterized by θind, thus the loss can be written
as

LPG(θemb, θind, ϕ)

=
∑

(x,y)∈Dtrain

L(g(hemb(hind(x; θind); θemb);ϕ), y). (4)

In the experiment, we use a mixed one that outputs the
concatenation of the existing and new indicators as the
indicator generator, which is a learnable special case of PG.

We can also improve Guider by knowledge transferred
from Digger. The final loss of Guider is written as:

Lg(θg, ϕ) = (1− λ2)LPG(θemb, θind, ϕ)

+ λ2

∑
(x,y)∈Dtrain

dist(fg(x; θind, θemb), ed), (5)

where eg := fg(x; θind, θemb). And dist(eg, ed) here brings
the embedding from Guider eg close to the fixed ed. The
detailed features learned by Digger can be transferred to
Guider, which can enrich the knowledge of Guider and
enhance its performance.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 5

Guider

Digger

Digger-Guider Mutual Distillation

Ground-Truth Pattern

Digger Learned Pattern

Guider Learned Pattern

Noise Point

Real Trend Point

Coarse-Grained Points
. . .

Fine-Grained Points
. . .

Fig. 3. Illustration of the effect of mutual distillation of Digger-Guider framework.

Algorithm 1: Digger-Guider Algorithm

1 Train Rule-based Guider by minimizing
LRG(θemb, ϕ) and get factor eg ;

2 Train Digger by minimizing Ld(θd, ϕ) and get factor
ed;

3 repeat
4 Train Parametric Guider by minimizing Lg(θg, ϕ)

and get new Guider factor eg ;
5 Train Digger by minimizing Ld(θd, ϕ) and get

new Digger factor ed;
6 until evaluation (current ed) ¡ evaluation (previous ed);

Output: The best digger factor ed.

3.3 Algorithm

The overall learning process is described in Algorithm 1. We
conduct iterative learning for training. We first train Guider
using the rule-based indicator generator and then use it to
guide Digger. Then, the price-volume embeddings learned by
Digger can be transferred to Guider to make its embeddings
rich in information. After that, we let Digger and Guider
be optimized alternatively by using Eqn. (2) and (5). In this
way, Digger and Guider share the fine-grained and coarse-
grained information with each other, which enables them to
enhance both sides. When the performance of Digger can not
be improved anymore on the validation set, we output its
best factor.

4 ALGORITHM ANALYSIS

In this section, we mathematically study how our approach
works. We first prove that the distillation item in the loss
function can be regarded as an adaptive version of Label
Smoothing, which works as a data-driven regularization to
prevent over-fitting. We then explain how the updated prior
knowledge at each iteration allows the two components of
Digger-Guider to be calibrated progressively.

To present our conclusions more clearly, we con-
sider the stock trend prediction a classification prob-
lem, where the labels are one-hot coded classes yi ∈
{rising, falling, unchanged}, as defined in previous
work [3], [11], [12]. We reach similar conclusions under

regression settings following the same method. For a given
example, the model outputs the likelihood assigned to the
i-th class as pi = softmax (zi) = exp{zi}∑k

j=1 exp{zj}
, where zi

denotes the logit output. That is, p = g(e;ϕ), where g(·;ϕ)
indicates the prediction model. We choose to use cross-
entropy H as loss in our framework as it’s very popular.
Then Eqn.(1) can be embodied as: L(g(f(x; θ);ϕ),y) =
H(g(e;ϕ),y) = H(p,y) =

∑M
i=1 −yi log pi, where M is the

number of samples.

4.1 Data-Driven Regularization Prevents Over-Fitting
Label Smoothing (LS) is a widespread method for a multi-class
neural network to improve generalization ability, which can
be viewed as a modular regularization [30], [31]. For LS, it
minimizes loss between smoothed labels yLS

i and network
output pi, where yLS

i is formulated as:

yLS
i = (1− λ)yi + λui, (6)

which is a mixture of label y and a fixed distribution u,
with hyper-parameter λ ∈ [0, 1]. Usually, u is an uniform
distribution (e.g., ui = 1

M). The cross-entropy loss LLS

defined over yLS is

LLS := H
(
p,yLS

)
=

M∑
i=1

− ((1− λ)yi + λui) log pi

= (1− λ)H(p,y) + λH(p,u).

(7)

For our framework, when the dist(·, ·) denotes knowl-
edge distillation computed by the prediction model and
cross-entropy, i.e., dist(ed, eg) = H(g(ed), g(eg)), the losses
of Digger (See Eqn.(2)) and Guider (See Eqn.(5)) can both be
simply written as:

LDG = (1− λ)H(p,y) + λH(p,p′), (8)

where p′ is the predicted probability from Digger/Guider
which is used as the target of distillation. Comparing
Eqn.(7) with Eqn.(8), we find the two loss functions have
similar forms. We define the loss of Digger-Guider LDG :=
H

(
p,yDG

)
, where yDG is formulated as

yDG
i = (1− λ)yi + λp′i. (9)

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 6

Comparing Eqn.(9) with Eqn.(6), we find that Digger-Guider
can be taken as an adaptive case of LS. Distribution p′ is
learned rather than fixed u, suggesting that the output of the
generalized Teacher model can be regarded as data-driven
prior knowledge to smooth the label for the Student model.

We conclude Digger-Guider can inherit most of the
benefits of LS, such as model regularization and better
calibration [30]. It is also more flexible than LS, since its
smoothed labels are learnable.

4.2 Prior Knowledge Update Helps Learning
We look deep into the iteration details to better understand
how iterative learning works. Taking Guider of iteration
k(k > 1) as an example, we rewrite Eqn.(5) as:

Lk
g = (1− λ)H(pk

g ,y) + λH(pk
g ,p

k−1
d)

= H(pk
g ,p

′k
g) =

M∑
i=1

−p′
k
g,i log p

k
g,i,

(10)

where pk
g denotes the output of Guider and pk−1

d denotes the
output from the trained Digger of iteration k − 1. Note that
p′

k
g,i is a newly defined smoothed label, which is formulated

as p′kg,i = (1 − λ)yi + λpk−1
d,i . This indicates that adding

distillation item (i.e., λH(pk−1
d ,pk

g)) into Guider’s loss is
actually equivalent to softening the hard label by Digger.
In this way, detailed embeddings learned by Digger can be
transferred to Guider in terms of adaptive label smoothing,
resulting in embeddings with richer and robust patterns.

Similarly, for Digger of iteration k(k > 1), we can rewrite
Eqn.(2) as below:

Lk
d = (1− λ)H(pk

d,y) + λH(pk
d,p

k
g)

= H(pk
d,p

′k
d) =

M∑
i=1

−p′
k
d,i log p

k
d,i,

(11)

where p′
k
d,i = (1−λ)yi+λpkg,i is a similar softened label. Let

pkg,i = p′
k−1
g,i +∆k

g,i. Without loss of generality, we regard ∆k
g,i

as gains (transferred knowledge) of Guider in the iteration k.
We expand p′

k
d,i according to the definition of pkg,i and ∆k

g,i

as below:

p′
k
d,i = (1− λ)yi + λpkg,i

= (1− λ)yi + λ(p′
k−1
g,i +∆k

g,i)

= (1− λ)yi + λ((1− λ)yi + λpk−2
d,i +∆k

g,i)

= (1− λ2)yi + λ2pk−2
d,i + λ∆k

g,i.

(12)

We find that the embedding p′
k
d,i in the last equation can be

decomposed into two components: label smoothing items
and prior knowledge from Guider. Label smoothing items
(1 − λ2)yi + λ2pk−2

d,i indicate the targets here are actually
softened by historical Digger at iteration k− 2, which acts as
a data-driven regularization, leading to better generalization
[30]. ∆k

g,i is the updated prior knowledge at iteration k. The
prior knowledge transferred from Guider helps Digger to
overcome the noise.

In summary, Digger-Guider is more than an adaptive
LS. The benefits of our proposed framework are threefold:
(1) Digger and Guider share the global and fine-grained
information to obtain complementary signal alternatively; (2)

The distillation item added into the loss functions (see Eqn.(2)
and Eqn.(5)) not only lets Digger and Guider assimilate to
each other, but also acts as a data-driven regularization in
terms of an adaptive version of label smoothing to improve
generalization abilities. (3) The prior knowledge (i.e., ∆k

g,i)
used for distillation is incremented and updated at each
iteration, allowing the model to be calibrated progressively.

5 EXPERIMENTS

In this section, we empirically evaluate our Digger-Guider
framework in real stock markets. Our learned high-frequency
factors are applied to the stock trend prediction and trading
simulation tasks. We also conduct a series of analytical
experiments to get in-depth insight into how it works.

5.1 Experiment Setup

We introduce the datasets, comparison methods, implemen-
tation details, and evaluation metrics in this section. We take
daily frequency as low frequency and 15-minute frequency
as high-frequency to predict daily trend labels, though our
framework can be applied to any frequency data, even higher-
frequency data.

5.1.1 Dataset
We evaluate our models on real-world stock data. We collect
stock sequences from Qlib1, an AI-oriented quantitative
investment platform. Our dataset consists of low-frequency
(daily) and high-frequency (15-min) price-volume stock data
over constituent stocks from two major global stock indices:
CSI300 and NASDAQ100. They are calculated by the stock
prices and capitals of the selected 300 and 100 stocks in
different stock exchanges. In our experiment, CSI300 includes
770 stocks with 968,908 samples while NASDAQ100 includes
171 stocks with 559,586 samples. According to Qlib, the stock
data are adjusted for dividends and splits. We select high-
frequency stock sequences in the past 20 days as inputs.
CSI300 and NASDAQ100 consist of six 2 and five 3 features
at each time step and there are 4 and 6.5 hours of continuous
transaction time for each trading day, respectively. Thus the
input lengths of the 15-min sequences are 20× 16 = 320 and
20× 26 = 520.

The CSI300 training set ranges from Feb. 16, 2007 to Dec.
31, 2013, while the NASDAQ100 training set ranges from Jan.
01, 2005 - Dec. 31, 2013. The time ranges of the validation set
and test set are the same for both datasets. The validation
set ranges from Jan. 01, 2014 to Dec. 31, 2015 and the test set
ranges from Jan. 01, 2016 to Jun. 01, 2020.

5.1.2 Comparison Methods
We compare our method with other baseline models to
evaluate performance. The first group is classical time
series forecasting models, including ARIMA [32] and Linear
Regression. The second group is recent deep learning models,
including MLP [33], Transformer [34], DailyRNN that uses

1. https://github.com/microsoft/qlib
2. highest price, opening price, lowest price, closing price, volume-

weighted average price, trading volume
3. except volume-weighted average price

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 7

TABLE 1
Performance of stock trend prediction on CSI300 and NASDAQ100.

Method CSI300 NASDAQ100

RMSE(%) MAE(%) RMSE(%) MAE(%)

ARIMA 2.4481 ± – 1.3679 ± – 6.0908 ± – 1.5285 ± –
Linear Regression 3.3470 ± 0.1549 2.2473 ± 0.1199 5.2025 ± 0.2377 2.2899 ± 0.0777

MLP 2.3033 ± 0.0888 1.7507 ± 0.1048 4.3010 ± 0.6439 3.6776 ± 0.7352
Transformer 3.0789 ± 0.0731 2.4248 ± 0.0988 3.7831 ± 0.3748 2.8390 ± 0.4777
Daily RNN 2.1261 ± 0.0441 1.5636 ± 0.0543 3.0970 ± 0.1970 2.7963 ± 0.1566
SFM 3.1299 ± 0.1631 2.6757 ± 0.1769 2.9470 ± 0.1867 2.0908 ± 0.2318
ALSTM 2.0538 ± 0.0108 1.4675 ± 0.0141 3.6060 ± 0.1186 2.6112 ± 0.2055
Adv-ALSTM 2.1160 ± 0.0283 1.5508 ± 0.0343 3.3874 ± 0.0800 2.5481 ± 0.1251
Informer 2.0416 ± 0.0228 1.4410 ± 0.0300 2.8891 ± 0.1111 1.9432 ± 0.0966
ETSformer 2.0323 ± 0.0210 1.4324 ± 0.0278 2.8060 ± 0.0954 1.8463 ± 0.1188

Coarse-Grained Model 2.2864 ± 0.0349 1.6444 ± 0.0388 3.7599 ± 0.3772 2.9251 ± 0.4785
Fine-Grained Model 2.3159 ± 0.0520 1.6455 ± 0.0462 3.7340 ± 0.2722 2.9096 ± 0.3631
Ensemble 2.2560 ± 0.0406 1.6030 ± 0.0427 3.4325 ± 0.3955 2.5958 ± 0.4918
Digger-Guider 1.9669 ± 0.0021 1.3499 ± 0.0025 2.4431 ± 0.0049 1.4783 ± 0.0055

daily-frequency data only, SFM [7], ALSTM [35], Adv-
ALSTM [3], Informer [23] and ETSformer [24]. Among them,
Informer and ETSformer are very representative works in the
field of time series prediction in recent years. The third group
consists of variants of our methods. Coarse-Grained Model has
same structure as Guider. Fine-Grained Model has the same
structure as Digger. They are used to verify the effectiveness
of knowledge distillation and mutual distillation. Ensemble
is the ensemble of Fine-Grained Model and Coarse-Grained
Model. We carefully select the hyper-parameters of the
baselines and report the performance of the best settings.

• ARIMA [32]: Autoregressive Integrated Moving Average
Model, a traditional time series forecast model.

• Linear Regression: the straightforward method for
regression.

• MLP [33]: Multilayer Perceptron, the multi-layer fully
connected neural network model.

• Transformer [34]: composed of the Attention mecha-
nism and is designed to handle sequential data.

• Daily RNN: two-layer GRU using daily data as input.
• SFM [7]: State Frequency Memory is a recent work

inspired by Fourier Transform. It aims to capture
trading patterns from investors with different trading
modes.

• ALSTM [35]: Attentive LSTM consists of a normal
LSTM with an input attention layer and a temporal
attention layer.

• Adv-ALSTM [3]: Adv-ALSTMleverages adversarial
training during model training, which is a variant of
ALSTM and seen as state-of-the-art in using daily-
frequency stock data.

• Informer [23]: Informer is an efficient transformer-
based model for long sequence time-series forecasting
that uses a novel self-attention mechanism, a self-
attention distilling technique, and a generative style
decoder, which won the best paper award at AAAI
2021.

• ETSformer [24]: ETSformer is a novel time-series
Transformer architecture that leverages the expo-
nential smoothing attention (ESA) and frequency
attention (FA) to improve the accuracy and efficiency

of time-series forecasting.
• Coarse-Grained Model: has the same structure as the

Guider.
• Fine-Grained Model: has the same structure as the

Digger. These two models take high-frequency stock
sequences as inputs. They are used to verify the
effectiveness of knowledge distillation and mutual
distillation.

• Ensemble: The above baselines are the single-model
method. We also develop an ensemble of the Fine-
Grained Model and Coarse-Grained Model. We tried
all possible average weights of Fine-Grained Model
and Coarse-Grained Model and reported the best
result. Specifically, we used a grid search in range[0,1]
to try different weight combinations and selected the
combination that achieved the best performance.

5.1.3 Implementation Details

Though we develop the Digger-Guider framework with the
following structures, other implementations are also possible.
We use an RNN model to construct the Digger since it can
process temporal data step by step. We use a CNN model
to build the Guider since it can process the temporal data
in several steps together within the same conception field.
Specifically, we implement Digger fd as a two-layer GRU,
with a hidden sizes of 64 for both layers. The prediction
model g is also set as a two-layer GRU with a hidden sizes
of 64. Digger and the prediction model are stacked together
to form an end-to-end structure for training. Since CNN is
usually not as strong as RNN in modeling temporal data,
we design a coarse-Grained CNN as Guider fg . For the
CSI300 dataset, each day we transform the high-frequency
data into a 2D frame sized 16 × 6, whose rows denote the
minute timeline and columns denote attributes. We use 1
layer of 2D convolution with a kernel size of 16 × 1 and
3 layers of 1D convolution with kernel sizes of {4, 2, 2} as
hind to extract indicators. Similarly, for the NASDAQ100
dataset, each day we transform the high-frequency data into
a 2D frame with size 26× 5, whose rows denote the minute
timeline and columns denote attributes. We use 1 layer of
2D convolution with a kernel size of 26 × 1 and 2 layers

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 8

of 1D convolution with kernel sizes of {13, 2} as hind to
extract indicators. Other hyper-parameters are the same for
both datasets. A fully connected layer with hidden size of
64 is used as hemb. The indicators in Rule-based Guider are
original daily-frequency features. Guider and the prediction
model are also stacked to form an end-to-end structure for
training. We set λ1 and λ2 as 0.5 for all experiments.

We delicately select the architectures of baseline models
and report the best performance with the following hyper-
parameters: ARIMA: p,d,q = 1,2,1. MLP: 3 layers with 256,
128, and 64 hidden sizes respectively. Transformer: 4 heads
and 2 encoder layers. Daily RNN: 2 layers GRU with 20 time
steps. SFM: the dimension of the state module is 64 and
the dimension of the frequency module is 10. ALSTM: the
hidden size of GRU is 64 and the hidden size for attention
net is 32. Adv-ALSTM: has the same parameters as ALSTM,
and the λ parameter for adversarial training loss is 0.01.
We adjusted part of the hyper-parameters of Informer and
ETSformer to make the model adapt to our task and kept
the rest unchanged. Other important hyper-parameters are
the same for our approach and baseline methods. They are
set as follows: The input window size T is 20. We train
each daily data in a batch and randomly shuffle the training
dataset before training. For data normalization, we prevent
data leakage carefully. In practice, we use the mean and
standard deviation values of the training set to do the z-score
normalization for the whole dataset. All the weights and
biases are initialized from the Xavier uniform distribution.
All the models are optimized by an Adam optimizer with a
learning rate of 10−3. We repeated each experiment 20 times
to report the average results and the standard deviations.

5.1.4 Evaluation Metrics
We take classical forecasting criteria like Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) as the eval-
uation metrics. Note that the smaller RMSE and MAE
mean the better performance of the model. We calculate

them as follow: RMSE =

√
1

NT

∑T
t

∑N
i

(
y
(i)
t − ŷ

(i)
t

)2
,

MAE = 1
NT

∑T
t

∑N
i

∣∣∣(y(i)t − ŷ
(i)
t

)∣∣∣
5.1.5 Quantitative Performance Indicators
We introduce the quantitative performance indicators in the
following.

• Rank Information Coefficient (Rank IC) means
the rank correlation coefficient between the two se-
quences. We calculate the average Rank IC among the
testing interval and all stocks in the dataset as follow:

Rank IC =
∑T

t corr(ŷ
(i)
t ,y

(i)
t)

T , where ŷ
(i)
t and y

(i)
t

denote the predicted and real stock sequence of stock i
at day t respectively. T denotes the number of days in
test set. And corr(ŷ(i)

t ,y
(i)
t) is the spearman correlation

coefficient [36] between above two sequences.
• Rank Information Ratio (Rank IR) is obtained

by Rank IC taking into standard deviation, which
measures the stability of Rank IC: Rank IR =

Rank IC

σ[corr(ŷ
(i)
t ,y

(i)
t)]

.

• Annualized Return (AR) means the equivalent an-
nual return an investor receives over a given period:

AR =
(

Pend

Pstart

)n0
n −1, where P means the total value

of the held stocks and cash, n0 means the trading
days per year, and n means the trading days over the
trading period.

• Information Ratio (IR) considers benefits and risks
synthetically and reflects returns above the returns
of the benchmark: IR = E[R]

σ[R] , where R denotes the
sequence of active returns (i.e., returns above the
returns of the benchmark), E[R] is the expected value
of the active return, and σ[R] is the standard deviation
of the active return.

• Maximum Drawdown (MDD) measures the largest
decline over the test period and shows the worst
scenario: MDD = max

Pi−Pj

Pi
, j > i where i and j

denote two different moments over the test period,
and P means the total value of the held stocks and
cash.

5.2 Main Experiment Results

In this section, we conduct stock trend prediction to evaluate
our factor extractor model and conduct a market trading
simulation to verify our model’s profitability. Moreover,
we compare our model with other methods to analyze the
effectiveness of Digger-Guider in preventing over-fitting.

5.2.1 Price Trend Prediction

We evaluate our factor extractor model by using the extracted
embeddings on stock trend prediction. The performance of
our method and baseline models are shown in Table 1. From
the table, we have some observations and inferences. (1)
None of the single model high-frequency baselines (Fine-
Grained Model, Coarse-Grained Model, SFM, ALSTM, Adv-
ALSTM, Informer, ETSformer) achieve stable and significant
improvement compared to the low-frequency baseline (Daily
RNN). These results show that the noise contained in higher-
frequency data is overwhelming. The poor performance
of the Fine-Grained Model indicates that it suffers from
over-fitting due to the noise buried in high-frequency data.
Meanwhile, the low accuracy of the Coarse-Grained Model
denotes that it is unable to generate robust static features
independently due to its low expressiveness. (2) Directly
combining models with different granularities cannot bring
gains compared to the Fine-Grained Model and the Coarse-
Grained Model. The effect of the Ensemble model is not
stable since it is sensitive to noise. As another approach to
overcoming noise and fusing models, our method can resist
noise and improve performance steadily.

Digger-Guider achieves the best RMSE and MAE on both
CSI300 and NASDAQ100 datasets, exceeding SFM, ALSTM
and Adv-ALSTM to a large margin. It also outperforms the
Informer and TSformer, representative works on time series
prediction. This is an exciting result for stock embedding
learning, as our Digger-Guider is the first model designed
for stock embedding from high-frequency data and achieves
significant improvement. All these results indicate that our
proposed model can overcome noise and generate good stock
embedding. Therefore, it can help investors to make a more
accurate price trend prediction.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 9

Jan 2016
Apr 2016

Jul 2016
Oct 2016

Jan 2017
Apr 2017

Jul 2017
Oct 2017

Jan 2018
Apr 2018

Jul 2018
Oct 2018

Jan 2019
Apr 2019

Jul 2019
Oct 2019

Jan 2020
Apr 2020

Jun 2020

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Benchmark ARIMA Linear Regression MLP Daily RNN
SFM ALSTM Adv-ALSTM Transformer Informer
ETSformer Coarse-grained Model Fine-grained Model Ensemble Model Digger-Guider

Date

C
um

ul
at

iv
e

Pr
of

it

Fig. 4. Cumulative profit with Topk-Drop trading strategy of Digger-Guider model and other baseline methods.

5.2.2 Market Trading Simulation

To verify our method’s profitability in real financial investing
scenarios, we conduct a market trading simulation. We
employ the Topk-Drop Strategy [5], [37], which is a simple
but popular trading strategy. Initially, investors invest in the
Top K stocks with the highest predicted ranking score. On
each trading day, the Drop number of held stocks with the
worst prediction score will be sold, and the same number of
unheld stocks with the best prediction score will be bought.
We conduct back-testing on real stock data with considering
practical constraints (i.e., with 0.15% opening fee, 0.25%
closing fee and 9.5% price limit threshold). Note that Topk-
Drop algorithm always sells Drop stocks every trading day,
which guarantees a fixed turnover rate.

Figure 4 compares the cumulative profit curves corre-
sponding to different approaches. The Benchmark in the figure
denotes the CSI300 index itself, which reflects the overall
performance of the market. From the figure, we find that
Digger-Guider achieves the highest cumulative profit over
almost the entire testing period despite the market volatility.
At the end of the test period, after deducting practical
constraints, the Annualized Return (AR) of the benchmark
(brown line) is 5.14%. The AR of Digger-Guider (red line) is
17.78%, indicating that the trading strategy based on Digger-
Guide can achieve an excess return rate of nearly 12.64%.

We conduct further quantitative analysis on trading
strategies in Table 2, including rank correlation (Rank IC and
Rank IR [6]), return indicator (AR), risk indicators (Maximum
Drawdown, MDD [38]) and risk-adjusted return (Information
Ratio, IR [39]). Digger-Guider achieves the best performance
over all these quantitative indicators, which indicates that
our model can make a steady profit. For instance, the IR
of Digger-Guider is the highest, reaching 0.82, while the IR
of the benchmark is around 0.27, which indicates that the
trading based on Digger-Guider can earn the highest excess
of the risk-free rate per unit of volatility.

5.2.3 The Effectiveness of Preventing Over-fitting
Since our method works as a data-driven regularization to re-
sist noise in high-frequency data (see Section 4), we compare
our method with some other common tricks that can prevent
over-fitting, including dropout [40], early stop [41] and L2-
Norm regularization [42]. Table 3 shows the performance of
the Fine-Grained Model and three models combined with
popular tricks on the CSI300 dataset. From the table, we
observe that with any of the three tricks added, there is
no significant improvement of performance on the training
and validation set. On the test set, only L2-Norm achieves
minor improvements. In contrast, our method significantly
outperforms other approaches. The reason is that our model
works as a data-driven regularization method. While the
other methods roughly restrict the capacity of models. They
are irrelevant to the data. Besides, we conduct a ablation
study on mutual distillation. We presented the results of Fine-
grained Model + Rule-based Guider on Table 3, which means
that the Fine-grained Model is only guided from the initial
version of Guider. In fact, this is equivalent to λ1 = 0.5 in
Eqn. (2) and λ2 = 0 in Eqn. (5). In this case, the regularization
term is data-driven, but the generalization ability of this
model is not as good as that of the full version of Digger-
Guider. The results of this ablation experiment demonstrate
the effectiveness of mutual distillation. By introducing the
mutual distillation technique, our Guider model not only
regularizes the function class of Digger but also provides
robust knowledge to Digger. Therefore, Digger can overcome
noise and achieve excellent performance.

5.3 Examples of Discovered Trading Patterns
Through in-depth model analysis, we find some crucial
patterns implying price trend recognized by our model from
the response values of the convolution kernel of Guider. Here
we illustrate two of them as examples. One is denoted as
Pattern A, which indicates fluctuation with large volume. And
the other implies both volume and price rise at the end of the day,

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 10

TABLE 2
Quantitative performance analysis of trading strategies in the market simulation.

Method Rank IC Rank IR AR IR MDD

Benchmark - - 0.0514 0.2688 -0.3704

ARIMA -0.0065 -0.1322 -0.0583 -0.2718 -0.4763
Linear Regression 0.0515 0.2850 0.0059 0.0245 -0.4461

MLP 0.0600 0.3636 0.0176 0.0726 -0.4366
Transformer 0.0715 0.5039 0.1373 0.6000 -0.3351
Daily RNN 0.0895 0.6525 0.1269 0.5523 -0.3533
SFM 0.0833 0.5891 0.0982 0.4042 -0.4504
ALSTM 0.0869 0.6205 0.1125 0.4912 -0.3349
Adv-ALSTM 0.0893 0.6438 0.1232 0.5362 -0.3353
Informer 0.0854 0.6180 0.1477 0.6534 -0.3247
ETSformer 0.0857 0.6185 0.1359 0.5998 -0.3074

Coarse-Grained Model 0.0885 0.6428 0.1006 0.4326 -0.3393
Fine-Grained Model 0.0919 0.6567 0.1407 0.6236 -0.3328
Ensemble 0.0961 0.6744 0.1551 0.6903 -0.3210
Digger-Guider 0.1010 0.7376 0.1778 0.8219 -0.2595

Volume Price

Time

Stock Code: SLJN Volume Price

Time

High

Low

Pattern A

Volume Price

Stock Code: CCYD

Time

Volume Price

TimePattern B

(a) Pattern A: Fluctuation with large volume

Volume Price

Time

Stock Code: SLJN Volume Price

Time

High

Low

Pattern A

Volume Price

Stock Code: CCYD

Time

Volume Price

TimePattern B

(b) Pattern B:Both volume and price rise at the end of the day

Fig. 5. Illustration of two trading patterns recognized by Digger-Guider from two stocks: SLJN and CCYD.

TABLE 3
RMSE of different methods to prevent over-fitting.

Method Training Validation Test

Fine-Grained Model 1.3949 1.4683 2.1812
+ Dropout 1.4138 1.4710 2.2001
+ Early Stop 1.4197 1.4710 2.1815
+ L2-Norm 1.4153 1.4669 2.1322
+ Rule-based Guider 1.4126 1.4653 2.0457

Digger-Guider (Ours) 1.4072 1.4607 1.9669

which we call Pattern B. These patterns provide insights into
the interpretability of the model.

We take two cases as examples to illustrate these patterns.
As shown in Figure 5, Pattern A and Pattern B are extracted
from two stocks: SLJN and CCYD, on May. 24, 2017. The
label of SLJN is located at the bottom 10%, and the label
of CCYD fails in the top 10% of all stocks. We present the
response values of two different CNN kernels in orange
and green, respectively. For SLJN, we see that the response
value of Guider is the largest on the 14th time bar of the
day. SLJN experiences a violent fluctuation in volume and
price. Volume surges in two minutes, and then returns to
its normal level. This is an apparent trace of Pattern A. By
combining Pattern A and other information, Digger-Guider
predicts that the price trend of SLJN is likely to be at the
bottom of the stock pool. For CCYD, it is obvious that the
response value of Guider is largest on the last time bar of the

day, and that there is a trend of rising volume and price at
the end of the day, which is an apparent trace of Pattern B.
By combining Pattern B and other information, our approach
predicts that the price trend of CCYD is very likely to be at
the top of the stock pool.

We further calculate the proportion of cases that are
consistent with the above rules and verify that these two
patterns are suggestive over the whole dataset. We conclude
that investors can benefit from these comprehensible patterns
and make better decisions.

6 OTHER ANALYSIS

In this section, we conduct analytical experiments, includ-
ing selecting the granularity of Guider, comparison with
intermediate-frequency models, and the effectiveness of
mutual distillation.

6.1 Processing Granularity of Guider
Guider is proposed as a simple but robust model. Naturally,
the statistical caliber of Guider determines the granularity
to exploit high-frequency data. To find a decent caliber, we
tested Digger guided by Guider with different granularities.
We analyze the model performance in different granularities
of Guider using the same frequency data. In addition to
the daily frequency, we implement several granularities
of high-frequency data on the CSI300 dataset, from top to
bottom, from coarse to fine, as summarized in Table 4. The
performances of different granularities are shown in Figure

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 11

TABLE 4
Different granularity design of Guider

Granularity Kernel Size Information Flow

Level 1 {16} 15min → 4h
Level 2 {8, 2} 15min → 2h → 4h
Level 3 {4, 4} 15min → 1h → 4h
Level 4 {4, 2, 2} 15min → 1h → 2h → 4h
Level 5 {2, 2, 2, 2} 15min → 30min → 1h → 2h → 4h

2.0718

1.9743 1.969 1.9669 1.9716

Level 1 Level 2 Level 3 Level 4 Level 5
1.95

2

2.05

2.1

RMSEAa

Granularity Level of the Guider

R
M

SE

Fig. 6. Performance of Digger-Guider on different granularities.

6. According to the figure, the performance first increases
and then decreases as the granularity becomes finer. There is
an optimal point among different levels of granularities. The
best granularity is located in Level 4. We make the following
inferences. 1) If the granularity of Guider is very coarse,
Guider will under-fit to the high-frequency information.
The poor-performance Guider cannot help Digger. 2) If the
granularity of Guider is very fine, it is difficult to resist noise.
This means Guider cannot guide Digger as well. Therefore, a
careful selection of Guider’s granularity is vital.

6.2 Comparison with Intermediate-Frequency Models

Digger-Guider can attain proper model granularity by in-
teracting between fine-grained and coarse-grained models,
so one may be curious about whether directly applying an
intermediate-frequency model can achieve good results as.
We develop several intermediate-frequency models by resam-
pling the high-frequency data to daily (240-minute), 120, 60,
48, 30 and 15-minute data. Then we use these intermediate-
frequency data to construct intermediate-frequency models.

Figure 7 shows the performance of intermediate-
frequency models and our Digger-Guider on CSI300 dataset.
We find that as the data frequency increases (Daily →
120min), the performance of intermediate models improves
gradually, which indicates that the fine-grained data does
contain more effective information. However, as the data
frequency further increases (60min → 48 min → 30min →
15min), the performance of intermediate models declines,
which discloses that the noise hidden in the finer-grained
data begins to dominate. Furthermore, although the 120min
model achieves the best performance (RMSE 2.0031), it still
has a big gap with Digger-Guider (RMSE 1.9669), which
verifies that directly applying intermediate data does not
work as well as our method. In summary, Digger-Guider
does not just resample the intermediate-frequency data but
also balances information utilization and noise tolerance via
mutual distillation.

2.0347

2.0031

2.0316
2.0438

2.1198

2.1812

1.9669

Daily 120min 60min 48min 30min 15min
1.95

2

2.05

2.1

2.15
Intermediate-frequency ModelsAa

Digger-GuiderAa

Data Frequency Level

R
M

SE

Fig. 7. Comparison with intermediate-frequency models.

2.1812

2.0347

1.9769 1.9729 1.9724 1.9669 1.9718

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 6 Iter 7
1.95

2

2.05

2.1

2.15
RMSEAa

Iteration
R

M
SE

Fig. 8. Performance of Digger-Guider at each iteration.

6.3 Effectiveness of Mutual Distillation

We also study the effectiveness of mutual distillation. Figure
8 shows the performance of Digger-Guider at each iteration.
With an increase of the number of iterations (Iter 1 → Iter
6), RMSE improves, indicating that the stock factors are
refined continually. As the learning process terminates when
Digger’s performance stops increasing (Iter 7), the gradual
improvement of Digger is essentially a process of balancing
valuable and noisy information adaptively.

7 CONCLUSION AND FUTURE WORK

In this paper, we study how to extract informative stock
factors from noisy high-frequency data. We propose a novel
learning framework, Digger-Guider. We use Guider to learn
robust global features, while Digger is designed to learn
rich, detailed signals. We then develop mutual distillation to
share the information between Digger and Guider. Extensive
experiments on stock markets demonstrate the effectiveness
of our framework, with the performance of Digger-Guider
significantly improving price trend prediction. We also show
that our method can capture the invaluable high-frequency
representation of stocks from noisy and volatile data. Our
work is one of the first few studies of feature extraction from
high-frequency price and volume data. In the future, we plan
to further study how to leverage finer-granularity data and
how to fuse multi-frequency stock factors to improve stock
trend prediction.

In the future, we plan to further study how to leverage
high-frequency data to improve stock trend prediction.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 12

8 LIMITATION

We conclude the limitations of the study as follows: 1) The
proposed Digger-Guider framework is evaluated on stock
market datasets, and its effectiveness on other types of
financial data or in other domains is not explored. 2) The
framework requires a large amount of high-frequency data
for training, which may not be available or feasible for some
applications. 3) Although we have repeated the experiments
multiple times and conducted fair comparisons with base-
lines to ensure the reliability and robustness of the results,
it should be noted that the performance of the framework
may still depend on the choice of hyperparameters and the
specific implementation details.

REFERENCES

[1] N. Barberis and R. H. Thaler, “A survey of behavioral finance,”
Handbook of The Economics of Finance, pp. 1053–1128, 2002.

[2] R. J. Shiller, “From efficient markets theory to behavioral finance,”
Journal of Economic Perspectives, vol. 17, no. 1, pp. 83–104, 2003.

[3] F. Feng, H. Chen, X. He, J. Ding, M. Sun, and T.-S. Chua, “Enhancing
stock movement prediction with adversarial training,” IJCAI, 2019.

[4] C. Li, D. Song, and D. Tao, “Multi-task recurrent neural networks
and higher-order markov random fields for stock price movement
prediction: Multi-task rnn and higer-order mrfs for stock price
classification,” in Proceedings of the 25th ACM SIGKDD, 2019, pp.
1141–1151.

[5] C. Chen, L. Zhao, J. Bian, C. Xing, and T.-Y. Liu, “Investment
behaviors can tell what inside: Exploring stock intrinsic properties
for stock trend prediction,” in Proceedings of the 25th ACM SIGKDD,
2019, pp. 2376–2384.

[6] Z. Li, D. Yang, L. Zhao, J. Bian, T. Qin, and T.-Y. Liu, “Individualized
indicator for all: Stock-wise technical indicator optimization with
stock embedding,” in Proceedings of the 25th ACM SIGKDD, 2019,
pp. 894–902.

[7] L. Zhang, C. Aggarwal, and G.-J. Qi, “Stock price prediction via
discovering multi-frequency trading patterns,” in Proceedings of the
23rd ACM SIGKDD, 2017, pp. 2141–2149.

[8] R. D. Edwards, J. Magee, and W. C. Bassetti, “Technical analysis of
stock trends,” CRC press, 2018.

[9] X. Zhu, S. Gong et al., “Knowledge distillation by on-the-fly native
ensemble,” in Advances in neural information processing systems
(NeurIPS), 2018, pp. 7517–7527.

[10] J. J. Murphy, “Technical analysis of the financial markets: A com-
prehensive guide to trading methods and applications,” Penguin,
1999.

[11] J. Wang, T. Sun, B. Liu, Y. Cao, and H. Zhu, “Clvsa: A convolutional
lstm based variational sequence-to-sequence model with attention
for predicting trends of financial markets,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence. AAAI Press,
2019, pp. 3705–3711.

[12] G. Liu, Y. Mao, Q. Sun, H. Huang, W. Gao, X. Li, J. Shen, R. Li,
and X. Wang, “Multi-scale two-way deep neural network for stock
trend prediction,” in Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, 7 2020, pp. 4555–
4561, special Track on AI in FinTech.

[13] Q. Ding, S. Wu, H. Sun, J. Guo, and J. Guo, “Hierarchical multi-
scale gaussian transformer for stock movement prediction,” in
Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI-20, 7 2020, pp. 4640–4646, special Track
on AI in FinTech.

[14] F. Black, “Noise,” Journal of Finance, vol. 41, no. 3, pp. 529–543, 1986.
[15] J. Zou, Q. Zhao, Y. Jiao, H. Cao, Y. Liu, Q. Yan, E. Abbasnejad,

L. Liu, and J. Q. Shi, “Stock market prediction via deep learning
techniques: A survey,” arXiv preprint arXiv:2212.12717, 2022.

[16] A. Thakkar and K. Chaudhari, “Fusion in stock market prediction: a
decade survey on the necessity, recent developments, and potential
future directions,” Information Fusion, vol. 65, pp. 95–107, 2021.

[17] A. Thakkar, D. Patel, and P. Shah, “Pearson correlation coefficient-
based performance enhancement of vanilla neural network for
stock trend prediction,” Neural Computing and Applications, vol. 33,
pp. 16 985–17 000, 2021.

[18] A. Thakkar and K. Chaudhari, “A comprehensive survey on deep
neural networks for stock market: The need, challenges, and future
directions,” Expert Systems with Applications, vol. 177, p. 114800,
2021.

[19] L. Cao, “Ai in finance: challenges, techniques, and opportunities,”
ACM Computing Surveys (CSUR), vol. 55, no. 3, pp. 1–38, 2022.

[20] A. Thakkar and K. Chaudhari, “Information fusion-based genetic
algorithm with long short-term memory for stock price and trend
prediction,” Applied Soft Computing, vol. 128, p. 109428, 2022.

[21] J. Wang, Z. Wang, J. Li, and J. Wu, “Multilevel wavelet decomposi-
tion network for interpretable time series analysis,” in Proceedings
of the 24th ACM SIGKDD, 2018, pp. 2437–2446.

[22] Y. Xu and S. B. Cohen, “Stock movement prediction from tweets
and historical prices,” in Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers),
2018, pp. 1970–1979.

[23] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-
series forecasting,” vol. 35, no. 12, pp. 11 106–11 115, 2021.

[24] G. Woo, C. Liu, D. Sahoo, A. Kumar, and S. C. H. Hoi, “Etsformer:
Exponential smoothing transformers for time-series forecasting,”
2022. [Online]. Available: https://arxiv.org/abs/2202.01381

[25] C. Buciluǎ, R. Caruana, and A. Niculescu-Mizil, “Model compres-
sion,” in Proceedings of the 12th ACM SIGKDD, 2006, pp. 535–541.

[26] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, 2015.

[27] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandku-
mar, “Born again neural networks,” in ICML, 2018.

[28] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

[29] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems (NIPS), 2012, pp. 1097–1105.

[30] R. Müller, S. Kornblith, and G. E. Hinton, “When does label
smoothing help?” in Advances in Neural Information Processing
Systems (NeurIPS), 2019, pp. 4696–4705.

[31] L. Yuan, F. E. Tay, G. Li, T. Wang, and J. Feng, “Revisiting knowledge
distillation via label smoothing regularization,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 3903–3911.

[32] R. G. Brown, Smoothing, forecasting and prediction of discrete time
series. Courier Corporation, 2004.

[33] D. W. Ruck, S. K. Rogers, and M. Kabrisky, “Feature selection using
a multilayer perceptron,” Journal of Neural Network Computing, vol. 2,
no. 2, pp. 40–48, 1990.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

[35] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. Cottrell, “A
dual-stage attention-based recurrent neural network for time series
prediction,” IJCAI, pp. 2627–2633, 2017.

[36] D. G. Bonett and T. A. Wright, “Sample size requirements for esti-
mating pearson, kendall and spearman correlations,” Psychometrika,
vol. 65, no. 1, pp. 23–28, 2000.

[37] X. Yang, W. Liu, D. Zhou, J. Bian, and T.-Y. Liu, “Qlib: An ai-oriented
quantitative investment platform,” arXiv preprint arXiv:2009.11189,
2020.

[38] M. Magdon-Ismail and A. F. Atiya, “Maximum drawdown,” Risk
Magazine, vol. 17, no. 10, pp. 99–102, 2004.

[39] T. H. Goodwin, “The information ratio,” Financial Analysts Journal,
vol. 54, no. 4, pp. 34–43, 1998.

[40] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” Journal of Machine Learning Research,
vol. 15, no. 1, pp. 1929–1958, 2014.

[41] R. Caruana, S. Lawrence, and C. L. Giles, “Overfitting in neural
nets: Backpropagation, conjugate gradient, and early stopping,” pp.
402–408, 2000.

[42] C. Ren, D. Dai, and H. Yan, “Robust classification using l 2,1 -norm
based regression model,” Pattern Recognition, vol. 45, no. 7, pp.
2708–2718, 2012.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2021 13

Yang Liu is a Research SDE at Microsoft. He
received his Master’s degree from University of
Science and Technology of China (USTC). His
research interests include AI in Financial Tech-
nology, Data Mining and Quantitative Trading. He
was the recipient of KDD CUP’ 19 PaddlePaddle
Special Award.

Chang Xu is a Senior Researcher at Microsoft
Research. Before that, she got her Ph.D. from the
Joint Ph.D. Program of Microsoft Research Asia
and Nankai University in 2019, and a Bachelor’s
degree in 2014. Her research interests include AI
in Financial Technology, Reinforcement Learning,
Natural Language Processing, and Computer
Vision. She has published her research in many
journals and conference proceedings, e.g., the
IEEE Transactions on Computers, ACM MM,
WWW, AAAI, IJCAI, ICME, and CIKM.

Min Hou received her Bachelor’s Degree in Engi-
neering from the Hefei University of Technology,
Hefei, China. She is currently pursuing her Ph.D.
at the School of Data Science, University of Sci-
ence and Technology of China, Hefei, China. Her
current research interests include data mining,
recommender systems and AI for finance. She
has published papers in refereed conference pro-
ceedings, such as AAAI, IJCAI, ICDM, WSDM.

Weiqing Liu is a Principal Research Manager at
Microsoft Research. He holds a Ph.D. degree in
the Department of Computer Science from the
University of Science and Technology of China.
His research interests focus on data mining
and machine learning. He is actively transferring
research to significant real-world applications,
especially to finance scenarios. His work has
led to tens of research papers in prestigious
conferences, such as KDD, ICML, WWW, WSDM,
AAAI and IJCAI.

Jiang Bian is a Senior Principal Research Man-
ager at Microsoft Research. He is leading the
machine learning solutions and services group,
with the main focus on designing cutting-edge
machine learning algorithms into real-world ap-
plication scenarios, including finance, healthcare,
supply-chain and sustainability. Prior to this, he
was a Scientist at Yahoo! Labs in the United
States, responsible for the content optimization
and personalization and Web search modules
in Yahoo! Homepage. After that, he jointed a

leading content distribution platform in China, i.e., Yidian Inc., and
became one of the core members of this startup company, with the
major responsibility of developing advanced recommendation models.
Dr. Bian has authored tens of research papers in many well-recognized
international conferences and has submitted a couple of US patents. He
has also served as PC Member for several international conferences and
Peer Reviewer for a few well-known journals. Dr. Bian graduated from
Peking University in China with a bachelor’s degree and then received
the Ph.D. degree in computer science at Georgia Institute of Technology
in the United States.

Qi Liu received the PhD degree in computer sci-
ence from University of Science and Technology
of China (USTC). He is currently a professor
at USTC. His general area of research is data
mining and knowledge discovery. He has pub-
lished prolifically in refereed journals and confer-
ence proceedings, e.g., the IEEE Transactions
on Knowledge and Data Engineering, the ACM
Transactions on Information Systems, the ACM
Transactions on Knowledge Discovery from Data,
the ACM Transactions on Intelligent Systems and

Technology, KDD, IJCAI, AAAI, ICDM, SDM, and CIKM. He has served
regularly in the program committees of a number of conferences, and is a
reviewer for the leading academic journals in his fields. He is a member of
the ACM, the IEEE, and the Alibaba DAMO Academy Young Fellow. His
research is also supported by the National Science Fund for Excellent
Young Scholars and the Youth Innovation Promotion Association of
Chinese Academy of Sciences (CAS).

Tie-Yan Liu received the Ph.D. degree and Bach-
elor degree both from Tsinghua University. He
is an Assistant managing director of Microsoft
Research Asia, leading the machine learning
research area. His seminal contribution to the
field of learning to rank and computational ad-
vertising has been widely recognized, and his
recent research interests include deep learning,
reinforcement learning, and distributed machine
learning. In particular, he and his team have
proposed a few new machine learning concepts,

such as dual learning, learning to teach, and deliberation learning. He
is an adjunct/honorary professor at Carnegie Mellon University (CMU),
University of Nottingham, and several other universities in China. He has
published 200+ papers in refereed conferences and journals, e.g., SIGIR,
WWW, ICML, KDD, NeurIPS, IJCAI, AAAI, ACL and so on, with around
20000 citations. He is a fellow of the IEEE, and a distinguished member
of the ACM.

